
D E P A R T M E N T O F

ELECTRICAL &

COMPUTER ENGINEERING

USING HARD MACROS TO REDUCE

FPGA COMPILATION TIME

WHAT IS A HARD MACRO?

PAPER SUMMARY

• Hard Macros are pre-placed

pre-routed design blocks

created for a specific FPGA

family

• All elements of a hard macro

move together to maintain the

same ‘shape’ as it is moves

• In Xilinx FPGAs, hard macros

exist at the primitive (NCD/XDL)

level. Xilinx uses NMC/XDL

files to represent them

• Hard macros are most effective

when they are compact (see

below)

• FPGA compilation is

very time consuming

• Hard Macros can

accelerate the design

process by 3X

• Propose a new design

flow based on hard

macros—enabling fast

FPGA compilation

HOW DO YOU MAKE A HARD MACRO?

.vhd,
.v

XST
NGD
Build

MAP PAR .ncd

Conventional Xilinx Flow

XDL
–ncd2xdl

.xdl HMG .xdl XDL
–xdl2ncd

.nmc

• Several challenges exist to

convert a conventional design to

a hard macro:
• Xilinx has several undocumented,

unsupported features, such as:

• No ground or power nets

• No TIEOFF primitives

• Only one port per net

• …

• The HMG identifies these issues and

properly addresses them to create

valid hard macros

• The HMG also locates all IOBs in a

design and replaces them with

appropriate Hard Macro ports

• Follows correct XDL conventions

for representing a hard macro

using BYU’s XDL framework

What Does the Hard Macro

Generator (HMG) Do?

WHAT KIND OF DESIGN FLOW WILL USE HARD MACROS?

Design
Parser &
Mapper

Design
Stitcher

XDL Hard
Macro
Placer

XDL
Router

.xdl

INPUT DESIGNS

HARD MACRO SOURCES

COMPLETELY
PLACED &

ROUTED XDL XILINX PAR EQUIVALENT

.mdl

.mdl

.mdl

HM
Cache

Generic
HMG

Custom HMGs
Custom HMGs Custom

HMGs

.vhd

HOW DO HARD
MACROS MAKE FPGA

COMPILATION FAST?

Experiment #2: Obtainable Speedup

Design XST NGDBuild MAP PAR Total Runtime

Mult-tree 46.7s 9.0s 17.7s 64.2s 137.5s

Heterogeneous 80.2s 4.9s 10.4s 35.5s 131.0s

Design Custom
Placer

XDL2NCD PAR –p
(router)

Total
Runtime

Speedup (over
baseline)

Mult-tree 4.3s 14.3s 25.7s 44.3s 3.1X

Heterogeneous 4.3s 12.1s 25.5s 41.9s 3.1X

Conventional Designs (Baseline Runtimes)

Hard Macro-based Designs

• XST/NGDBuild/Map = 0 secs,
PAR reduced

• Assume placer can run very
quickly (only a few blocks vs.
1000’s)

• XDL design assembler will be
fast (trivial operation)

PAR-
p

.ncd .xdl

Hard

Macro 1

Hard

Macro 2

Hard

Macro 4

Hard

Macro 3

Hard

Macro 5

Custom
Placer

xdl2
ncd

× × × × × × × ×

× × × ×

× ×

×

Tree Multiplier (20-bit) Design

HMFlow will support

VHDL and MATLAB

Simulink files

Hard macros in HMFlow will

either be made on the fly

through generic/custom hard

macro generators or retrieved

from a hard macro cache

Once a design’s elements have

been completely mapped to

hard macros, they are

assembled together into a

complete design

Designs will be parsed and each design

block or entity mapped to a hard macro

A design with hard macros will require a special

hard macro placer, optimized for such designs

A custom router will allow

for optimized routing of

hard macro designs and

eliminate extra database

loading times

HMFlow

• Experiment #1: Determine Xilinx hard

macro support

• Can Xilinx tools implement designs

created purely of hard macros?

• Experiment #2: Determine obtainable

speedup of a hard macro-based flow

• Hand place hard macros to get accurate

timing of the routing

Hard Macro Experiments

• No need for synthesis (XST), technology

mapping (NGDBuild), or packing (MAP)

• Skipping these steps saves significant

part of build time

• Potentially faster placement times

• Only placing 10’s hard macros instead of

1000’s of primitives

• Faster routing times

• Hard macros contain all necessary

internal routing

• Hard macro designs only need routing to

connect hard macros to each other and to

IOs

• Offer significant design reuse

• Once a hard macro is built, it can be

reused in many other designs without the

need to rebuild it

Benefits of Hard Macros

Regular Design Hard Macro Design

VS.

.NGD MAP PAR .NCD BITGEN .BIT XST .NGC NGDBuild
.VHD

.NCD

Design Hard Macro
Design Tool

.NCD

• Three different results

1. Design placed/routed fine but took longer than regular

design

2. PAR failed, could not find a valid placement

3. Placement succeeded, but no valid routing could be

found

• Conclusions

• Xilinx PAR is not suitable for hard macro-based designs

• Placement of hard macros is source of problems

• Implies creation of our own hard macro-optimized placer

• Experiment #2 tests if custom placer would speed up
compilation time

Experiment #1: Xilinx

Hard Macro Support

XST
NGD
Build

MAP PAR .ncd .vhd

Hard

Macro 1

Hard

Macro 2

Hard

Macro 4

Hard

Macro 3

Hard

Macro 5

Conventional Xilinx Flow

Interpolator

TED

Decision

Loop

Filter

NCO

PED

Loop Filter

DDS

matched

filter

μ strobe

Example QPSK Design

• Place Hard Macros by hand to

determine obtainable speedup

• Conclusions

• 3X obtainable speedup

• Custom router will also increase

speedup

Conversion of Conventional

Design to Hard Macro

Placed &
Routed
Design

Placed &
Routed
Design

Conventional Xilinx Flow

A Hard Macro-based Design Flow

Christopher Lavin, Marc Padilla, Subhrashankha Ghosh,
Brent Nelson, Brad Hutchings, and Michael Wirthlin

