

RAPIDSMITH

A Library for Low-level Manipulation of
Partially Placed-and-Routed FPGA Designs

Technical Report and Documentation
Christopher Lavin, Marc Padilla, Jaren Lamprecht, Philip Lundrigan,

Brent Nelson, Brad Hutchings, and Michael Wirthlin

NSF Center for High Performance Reconfigurable Computing (CHREC)
Department of Electrical and Computer Engineering

Brigham Young University
Provo, UT 84602

Revised: 24 Jan 2014

This work was supported by the I/UCRC program of the National Science Foundation under grant number 0801876.

 Page | 2

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

TABLE OF CONTENTS
Table of Figures .. 5

Introduction ... 6

What is RapidSmith? .. 6

Who Should Use RapidSmith? ... 6

Why RapidSmith? ... 6

Which Xilinx Parts does RapidSmith Support? .. 6

How is This Different than VPR? ... 7

Why Java? ... 7

Legal and Dependencies ... 9

RapidSmith Legal Text ... 9

Included Dependency Projects .. 9

Getting Started .. 11

Installation ... 11

Getting RapidSmith .. 11

Requirements for Installation .. 11

Steps for Installation ... 11

Additional Notes for Mac OS X Installation .. 12

Overview ... 13

bitstreamTools.* Package .. 14

design Package .. 14

design.explorer Package .. 16

design.parser Package ... 18

device Package .. 18

device.browser Package ... 19

device.helper Package ... 20

examples Package ... 20

placer Package .. 20

primitiveDefs Package ... 20

router Package .. 21

tests Package .. 21

timing Package .. 21

util Package ... 21

Examples ... 21

 Page | 3

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Hello World .. 21

Hand Router .. 23

Part Tile Browser .. 23

Understanding XDL .. 25

What is XDL? ... 25

Basic Syntax of XDL Files ... 26

Design Statement .. 26

Module Statement ... 26

Instance Statement .. 27

Net Statement .. 27

Basic Syntax of XDLRC Files .. 28

Tiles ... 28

Primitive Sites ... 28

Wire ... 29

PIP ... 29

Primitive Definitions ... 30

RapidSmith Structure .. 31

A RapidSmith Design ... 31

Loading Designs ... 31

Saving Designs.. 32

A RapidSmith Device ... 32

Device ... 32

Wire Enumerator ... 32

Memory and Performance ... 33

Device Performance and Memory Usage ... 33

Wire Enumerator Size and Performance ... 33

Placement in RapidSmith .. 34

Primitive Resources in RapidSmith .. 34

Primitive Site .. 34

Primitive Definitions and Types ... 35

Primitive Instances .. 35

Placement .. 36

Placement Techniques .. 36

Routing in RapidSmith ... 37

Wire Resources in RapidSmith ... 37

Wire Representation .. 37

 Page | 4

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Basic Routing .. 39

Router Structure .. 39

Routing Static Sources (VCC/GND) .. 40

Routing Clocks ... 40

Internal Pin Names and External Pin Names .. 40

Bitstreams in RapidSmith ... 43

Bitstream Composition ... 43

Bitstream Header .. 44

Dummy and Synchronization Data ... 45

Packet List ... 45

Bitstream Configuration Data ... 45

FPGA .. 45

Xilinx Configuration Specification ... 45

Frame Address Register .. 46

Frame .. 46

Configuration Block .. 47

Appendix ... 49

Appendix A: Modifying LUT Content ... 49

LUT Equation Syntax ... 49

XDL LUT Equation Syntax .. 49

Appendix B: Hard Macros in XDL and RapidSmith .. 50

Xilinx NMC files .. 50

Xilinx Hard Macros .. 50

RapidSmith Hard Macro Generator .. 50

Appendix C: Xilinx Family Names and Part Names .. 51

Xilinx Part Names in RapidSmith ... 51

Xilinx Family Names in RapidSmith .. 51

Appendix D: XDLRC Compatible Families ... 52

Appendix E: Memory and Performance of RapidSmith ... 52

Wire Enumerator Files .. 53

Primitive Definitions Files .. 53

Device Files .. 53

 Page | 5

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

TABLE OF FIGURES
Figure 1 - Design and Attribute classes .. 15
Figure 2 - Instance class .. 15
Figure 3 - Net, Pin and PIP Classes .. 16
Figure 4 - Hyperlinks in Design Explorer ... 17
Figure 5 - Timing report loaded in Design Explorer .. 18
Figure 6 - Device Browser screenshot .. 19
Figure 7 - Device browser screenshot showing wire connections .. 20
Figure 8: Screenshot of Part Tile Browser .. 24
Figure 9: Block diagram of where XDL fits in CAD flow. .. 25
Figure 10: (a) The classes involved in defining a design in RapidSmith, (b) The major classes involved
representing a device. .. 31
Figure 11 – Device Browser screenshot showing site SLICE_X1Y121 in tile CLB_X1Y60 35
Figure 12 - A DOUBLE line in an FPGA illustrating how each part of the wire has a different name depending
on the tile it is located in. .. 37

 Page | 6

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

INTRODUCTION
What is RapidSmith?
The BYU RapidSmith project is a set of tools and APIs written in Java that aim to provide academics with an
easy-to-use platform to try out experimental ideas and algorithms on modern Xilinx FPGAs. RapidSmith is
based on the Xilinx Design Language (XDL) which provides a human-readable file format equivalent to the
Xilinx proprietary Netlist Circuit Description (NCD). With RapidSmith, researchers are able to import
XDL/NCD, manipulate, place, route and export designs among a variety of design transformations. The
RapidSmith project makes an excellent test bed to try out new ideas and algorithms for FPGA CAD research as
code can quickly be written to take advantage of the APIs available.

RapidSmith also contains packages which can parse/export bitstreams (at the packet level) and represent the
frames and configuration blocks in the provided data structures. It can parse, manipulate and export bitstreams
according to Xilinx documented methods.

RapidSmith does not include any proprietary information about Xilinx FPGAs that is not publicly available.

Who Should Use RapidSmith?
RapidSmith is aimed at use by academics in all fields of FPGA CAD research. It is written in Java; therefore
those using it will need to have a basic knowledge of programming and using Java. It also depends on some
understanding of Xilinx FPGAs and XDL, however, this documentation hopes to bring people unfamiliar with
these topics up to speed.

RapidSmith by no means is a Xilinx ISE replacement and cannot be used without a valid and current license to
a Xilinx tools installation. RapidSmith should not be used for designs bound for commercial products and is
offered mainly as a research tool.

Why RapidSmith?
The Xilinx ISE tools provide an xdl executable that allows conversion of NCD files to and from XDL which
can then be parsed, manipulated and exported using RapidSmith. The xdl executable also creates special
device files which are huge in size but contain useful detailed device data.

RapidSmith takes care of all of the parsing and detailed FPGA part information that can be cumbersome to
use—alleviating the need to build such parsing tools by the researcher. RapidSmith creates special part files
from these device files created by the ISE tools which can then be used by RapidSmith for design manipulation.
This project provides researchers the ability to leverage all of the XDL work previously done and avoid
duplicate work. This will enable researchers to have more time to focus on what matters most: their research of
new ideas and algorithms.

Which Xilinx Parts does RapidSmith Support?
Virtex 4 and 5 families have been tested the most and are currently supported in all forms and applications.
However, the XDLRC reports which can be extracted from the xdl executable are very regular and so
RapidSmith can create device files for all modern Xilinx FPGA families. Therefore, RapidSmith supports (to a

 Page | 7

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

lesser extent than Virtex 4 and Virtex 5) the following families: Artix 7, Kintex 7, Spartan 2, Spartan 2E,
Spartan 3, Spartan 3A, Spartan 3ADSP, Spartan 3E, Spartan 6, Virtex, Virtex E, Virtex 2, Virtex 2 Pro, Virtex
6, Virtex 7 and Zynq. To create the device files for the legacy devices, Xilinx ISE 10.1.03 or earlier will be
needed. The table below provides a complete set of compatible features for each Xilinx FPGA family. See the
Appendix for more family compatibilities (Spartan 6L, Virtex 6L, etc.).

Xilinx FPGA
Family

Device Database,
XDL Parsing,

Manipulation &
Export

Placement
Capabilities

Router
Capabilities

Bitstream
Parsing,

Manipulation &
Export

Artix 7 X X
Kintex 7 X X
Spartan 2 X X
Spartan 2E X X
Spartan 3 X X
Spartan 3A X X
Spartan 3ADSP X X
Spartan 3E X X
Spartan 6 X X
Virtex X X
Virtex E X X
Virtex 2 X X
Virtex 2 Pro X X
Virtex 4 X X X X
Virtex 5 X X X X
Virtex 6 X X X
Virtex 7 X X
Zynq X X

How is This Different than VPR?
VPR (Versatile Place and Route) has been an FPGA research tool for several years and has led to hundreds of
publications on new FPGA CAD research. It has been a significant contribution to the FPGA research
community and has grown to be a complete FPGA CAD flow for research-based FPGAs.

The main difference between RapidSmith and VPR is that RapidSmith aims to provide the ability to target
commercial Xilinx FPGAs. All features of these FPGAs which are accessible via XDL are available in
RapidSmith. Our understanding is that VPR currently is limited to FPGA features which can be described using
VPR's architectural description facilities.

Why Java?
We have found Java to be a rapid prototyping platform for FPGA CAD tools. The Java libraries are rich with
data structures useful for such applications and Java eliminates the need to clean up objects in memory. This
eliminates the time needed to debug such things in other development platforms, leaving more time for the
researcher to focus on the real research at hand.

 Page | 8

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Some may argue that Java is a poor platform for FPGA CAD tool design as it has a reputation of being a
memory hog and slow. We believe that these claims are overstated and that both speed and memory can be
controlled to the point where this is not an issue.

 Page | 9

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

LEGAL AND DEPENDENCIES
RapidSmith Legal Text

 BYU RapidSmith Tools

 Copyright (c) 2010-2011 Brigham Young University

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

Included Dependency Projects
RapidSmith includes the Caucho Technology Hessian implementation which is distributed under the Apache
License. A copy of this license is included in the doc directory in the file APACHE2-LICENSE.txt. This license
is also available for download at:

 http://www.apache.org/licenses/LICENSE-2.0

The source for the Caucho Technology Hessian implementation is available at:

 http://hessian.caucho.com

RapidSmith also includes the Qt Jambi project jars for Windows, Linux and Mac OS X. Qt Jambi is distributed
under the LGPL GPL3 license and copies of this license and exception are also available in the /doc directory in
files LICENSE.GPL3.TXT and LICENSE.LGPL.TXT respectively. These licenses can also be downloaded at:

 http://www.gnu.org/licenses/licenses.html

Source for the Qt Jambi project is available at:

 http://qt.nokia.com/downloads

and more recent versions are available at:

 http:/qt.gitorious.org/qt-jambi

RapidSmith also includes the JOpt Simple option parser which is released under
the open source MIT License which can be found in this directory in the file
MIT_LICENSE.TXT. A copy of this license can also be found at:

 Page | 10

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

 http://www.opensource.org/licenses/mit-license.php

A copy of the source for JOpt Simple can also be downloaded at:

 http://jopt-simple.sourceforge.net/download.html

The user is responsible for providing copies of these licenses and making available the source code of these
projects when redistributing these jars.

 Page | 11

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

GETTING STARTED
Installation
Getting RapidSmith
You can download the latest release of RapidSmith from the sourceforge page here:

http://sourceforge.net/projects/rapidsmith/files/

You can also checkout the repository from SVN. We recommend using Eclipse, however, any IDE will work
fine. To check out the RapidSmith project, the SVN repository URL is:

svn://svn.code.sf.net/p/rapidsmith/code/trunk

The SVN command to check it out is:

svn checkout svn://svn.code.sf.net/p/rapidsmith/code/trunk rapidsmith-code

This repository contains all the files you need (including supporting JAR files). If you are using Eclipse as your
IDE, it contains project files to get the project up and running with minimal effort. If you downloaded the
distribution, just extract the files into your workspace (eg: ~/workspace/rapidSmith). Then, in Eclipse, you can
import the project by going to File->Import, then choose "General/Existing Projects into Workspace". On the
next screen, choose "Select root directory" and choose the newly created folder "rapidSmith". Then click finish.
This should load up the project in your workspace. Then follow the steps below to complete the installation.
You may have to restart Eclipse after setting the environment variables to get things to work.

Requirements for Installation
• 400 MB free disk space
• Windows XP/Vista/7 or Linux (Mac OS X will work (see notes below), but Xilinx tools do not run on

Mac OS X)
• Xilinx ISE 11.1 or higher (10.1.03 or earlier for legacy devices).
• JDK 1.6 (earlier versions may work, but have not been tested). NOTE: If you plan on using the Qt Jambi

framework in a Windows environment, you will need the 32-bit JRE (Qt Jambi 4.6.3 has yet to be
compiled in 64-bit Windows).

• Supporting JARs
o INCLUDED: Caucho Hessian Implementation JAR v.4.0.6 (Used for compressing database

device files)
o INCLUDED: Qt Jambi (Qt for Java) for the Part Tile Browser example. Just adding the jars to

the CLASSPATH variable is adequate.
o INCLUDED: JOpt Simple for use by some examples in the bitstream tools packages.
o OPTIONAL: JavaCC if the user wants to change the XDL design parser. There is also a good

plugin for Eclipse for JavaCC which makes it easier to modify and compile .jj files.

Steps for Installation
1. Make sure the Xilinx tools and JDK are on your PATH.

 Page | 12

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

2. Add all the jar files in the jars folder (hessian-4.0.6.jar, qtjambi-4.6.3.jar, qtjambi-<your_platform>-
4.6.3.jar, jopt-simple-3.2.jar) to your CLASSPATH environment variable.

3. Add the RapidSmith Java project to your CLASSPATH environment variable.
4. Create an environment variable called RAPIDSMITH_PATH and set its value to the path where you

have the Java project located on your computer.
5. (Skip this step if you are not using legacy devices) When using RapidSmith with legacy Xilinx devices

(Spartan 2/2E, Virtex, Virtex E/2/2Pro), ISE 10.1 or earlier will be needed. In order to point
RapidSmith to the appropriate installation of tools, we use an environment variable:
XILINX_LEGACY_PATH which you must add and set its value to the ‘bin’ path of the 10.1 or earlier
tools. For example, setting XILINX_LEGACY_PATH=/opt/xilinx/10.1/ISE/bin/lin64
would use the 64-bit tools of ISE 10.1 of a Linux installation.

6. Compile all of the Java classes (this can be done automatically if the project is imported into an IDE
such as Eclipse).

7. Test your installation by running any of the programs, for example, run:

java edu.byu.ece.rapidSmith.util.BrowseDevice xc5vlx20tff323

OBSOLETE: Device files are now included with RapidSmith, so the Installer class no longer needs to be run.
The following instructions are simply included for legacy users (versions of RapidSmith older than 0.5.0, and
using older device versions). Generate the supporting device and enumeration files needed to run the various
parts of RapidSmith. Please note that if you are generating both families of Virtex 4 and Virtex 5 parts, it will
take several hours and is best left to run overnight because of the time requirement. This only needs to be
done once, however. To generate the part files, follow these steps:

a. Choose which parts you plan to use, or you can choose to do all parts in the Virtex 4 and Virtex 5
families (in the future, more parts will be compatible).

b. Run the installer for RapidSmith by executing the main method in the class
edu.byu.ece.rapidSmith.util.Installer. This is accomplished by running the
following at the command line:
Java –Xmx1600M edu.byu.ece.rapidSmith.util.Installer virtex4 virtex5

c. The previous command will take several hours. Some of the larger parts will also require a lot of
heap memory to generate the part file (sometimes 1600M is too large for some computers, if it
fails, try 1200M).

d. You can test if the file generation worked by looking in the appropriate folders (devices/virtex4
and devices/virtex5). You can also run the BrowseDevice class as a test to see if you are able
to browse any of the parts that have just been created. You can run this with the following
command:

Additional Notes for Mac OS X Installation
• The Xilinx tools do not run under Mac OS X and therefore, the installer would have to generate the files

on Linux or Windows. However, once the files are created, they could be moved to a Mac OS X
installation.

• To add/modify global environment variables in Mac OS X, one preferred way would be to edit the
environment.plist file in the ~/.MacOSX directory. Here is an example of a proper setup for
RapidSmith:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

 Page | 13

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

<plist version="1.0">
<dict>
 <key>RAPIDSMITH_PATH</key>
 <string>/Users/[user name]/Documents/workspace/rapidSmith</string>
 <key>CLASSPATH</key>
 <string>$CLASSPATH:/Users/[user name]/Documents/workspace/rapidSmith:/Users/[user
name]/Documents/workspace/rapidSmith:/Users/[user
name]/Documents/workspace/rapidSmith/jars/hessian-4.0.6.jar:/Users/[user
name]/Documents/workspace/rapidSmith/jars/qtjambi-4.6.3.jar:/Users/[user
name]/Documents/workspace/rapidSmith/jars/qtjambi-macosx-gcc-4.6.3.jar</string>
</dict>
</plist>

• Another difference is that when running programs that use Qt in Java under Mac OS X, the user will

need to supply an extra JVM switch, “-XstartOnFirstThread”

Overview
RapidSmith is organized into several packages (all packages are prefixed with “edu.byu.ece.rapidSmith”):

Package Name Description
bitstreamTools.bitstream Represents the packet view of a Xilinx

bitstream. It contains classes to represent the
header, packets, types, configuration registers
and bitstream parsing and export facilities.

bitstreamTools.bitstream.test Contains classes and scripts to test the
bitstream package.

bitstreamTools.configuration Provides an FPGA-level view of the
configuration data in a bitstream using frames
and contains an implementation of the frame
address register.

bitstreamTools.configurationSpecification This package contains specifications (column
layouts) of all supported devices. It also
defines different constructs such as block
types, block sub types and part library
functions.

bitstreamTools.examples This package provides some examples on how
to use the bitstream functionality in
RapidSmith.

bitstreamTools.examples.support Some support classes for the examples in the
previous package.

design Represents all of the constructs in XDL design
files (Instances, Nets, PIPs, Modules, and
Designs).

design.explorer This is a GUI interactive explorer that allows
the user to navigate through the various
constructs in the design (Nets, Instances,
Modules and Module Instances). It also has a
tile map which allows the user to view the
locations of various objects on the FPGA
fabric. It also contains an experimental timing
report parser to correlate timing information

 Page | 14

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

with a design.
design.parser A JavaCC-based parser for XDL files which

populate an instance of the Design class in the
design package.

device This package encompasses all the details of an
FPGA device (part name, tiles, primitive sites,
routing resources). All information about
Xilinx parts is populated in device from the
XDLRC files generated by the xdl executable.

device.browser This program is an extension of the part tile
browser found in the examples package. It
allows the user to browse all of the installed
parts and also navigate primitive sites as well
as routing resources.

device.helper Some classes to help in the creation of the
device files.

examples Some user examples of how to use
RapidSmith.

gui This package is used to help build graphical
programs in Qt for RapidSmith. It contains
useful and common widgets that can be put
together easily using the Qt framework.

placer This contains classes to place designs.
primitiveDefs This is also populated from the XDLRC file. It

is specific to a Xilinx family of parts (such as
Virtex 4 or Virtex 5). It defines all primitives
which are part of a Xilinx family of parts
(SLICEL, SLICEM, RAMB16, …).

router This contains classes to route designs and has a
framework to help users of RapidSmith create
new routers.

tests This package contains test classes that will
exercise various portions of RapidSmith.

timing Currently, this is an experimental TWR parser
that will parse timing reports output from
Xilinx Trace (trce).

util This contains miscellaneous support classes
and utilities, including the installer.

bitstreamTools.* Package
Please see the chapter on Bitstreams in RapidSmith for details on the bitstream functionality in RapidSmith.

design Package
The design package has all the essential classes necessary to represent all kinds of XDL designs with classes to
represent each type of XDL construct. Below in Figures 1, 2, and 3 are some basic illustrations of how the
most common XDL constructs map into RapidSmith design classes:

 Page | 15

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Figure 1 - Design and Attribute classes

Figure 2 - Instance class

String	name;

String	partName;

String	NCDVersion;

ArrayList<Attribute>	attributes;

DESIGN CLASS

String	physicalName;
String	logicalName;
String	value;

ATTRIBUTE CLASS

===
XDL NCD CONVERSION MODE $Revision: 1.01$
time: Thu Jun 11 11:48:44 2009

===

===
The syntax for the design statement is:
design <design_name> <part> <ncd version>;
or
design <design_name> <device> <package> <speed> <ncd_version>
===
design "top" xc4vfx12ff668-10 v3.2 ,

cfg "
_DESIGN_PROP::BUS_INFO:4:OUTPUT:gpio<3:0>

_DESIGN_PROP::PIN_INFO:gpio<0>:/top/PACKED/top/gpio<0>/gpio<0>/PAD:OUTPUT:
3:gpio<3\:0>

_DESIGN_PROP::PIN_INFO:gpio<1>:/top/PACKED/top/gpio<1>/gpio<1>/PAD:OUTPUT:
2:gpio<3\:0>

_DESIGN_PROP::PIN_INFO:gpio<2>:/top/PACKED/top/gpio<2>/gpio<2>/PAD:OUTPUT:
1:gpio<3\:0>

_DESIGN_PROP::PIN_INFO:gpio<3>:/top/PACKED/top/gpio<3>/gpio<3>/PAD:OUTPUT:
0:gpio<3\:0>

_DESIGN_PROP::PK_NGMTIMESTAMP:1231972339";

===
The syntax for instances is:
instance <name> <sitedef>, placed <tile> <site>, cfg <string> ;
or
instance <name> <sitedef>, unplaced, cfg <string> ;

For typing convenience you can abbreviate instance to inst.

For IOs there are two special keywords: bonded and unbonded
that can be used to designate whether the PAD of an unplaced IO is
bonded out. If neither keyword is specified, bonded is assumed.

The bonding of placed IOs is determined by the site they are placed in.

If you specify bonded or unbonded for an instance that is not an
IOB it is ignored.

Shown below are three examples for IOs.
instance IO1 IOB, unplaced ; # This will be bonded
instance IO1 IOB, unplaced bonded ; # This will be bonded
instance IO1 IOB, unplaced unbonded ; # This will be unbonded
===
inst "DCM_AUTOCALIBRATION_DCM_clock/DCM_clock" "DCM_ADV",placed
DCM_BOT_X15Y4 DCM_ADV_X0Y1 ,

cfg " BGM_CONFIG_REF_SEL::CLKIN BGM_DIVIDE::16 BGM_LDLY::5
BGM_MODE::BG_SNAPSHOT

BGM_MULTIPLY::16 BGM_SAMPLE_LEN::2 BGM_SDLY::3 BGM_VADJ::5
BGM_VLDLY::7

BGM_VSDLY::0 CLKDV_DIVIDE::2.0 CLKFX_DIVIDE::1 CLKFX_MULTIPLY::4
CLKIN_DIVIDE_BY_2::FALSE CLKOUT_PHASE_SHIFT::FIXED CLK_FEEDBACK::1X
CTLGOINV::#OFF CTLMODEINV::#OFF CTLOSC1INV::#OFF CTLOSC2INV::#OFF
CTLSEL0INV::#OFF CTLSEL1INV::#OFF CTLSEL2INV::#OFF DADDR0INV::#OFF
DADDR1INV::#OFF DADDR2INV::#OFF DADDR3INV::#OFF DADDR4INV::#OFF

DADDR5INV::#OFF
DADDR6INV::#OFF DCM_CLKDV_CLKFX_ALIGNMENT::TRUE

DCM_EXT_FB_EN::FALSE
DCM_LOCK_HIGH::FALSE DCM_PERFORMANCE_MODE::MAX_SPEED

DCM_UNUSED_TAPS_POWERDOWN::TRUE
DCM_VREF_SOURCE::VBG_DLL DCM_VREG_ENABLE::TRUE DENINV::#OFF

DESKEW_ADJUST::17
DFS_AVE_FREQ_ADJ_INTERVAL::3 DFS_AVE_FREQ_GAIN::2.0

DFS_AVE_FREQ_SAMPLE_INTERVAL::2
DFS_COARSE_SEL::LEGACY DFS_EARLY_LOCK::FALSE DFS_EN_RELRST::TRUE
DFS_EXTEND_FLUSH_TIME::FALSE DFS_EXTEND_HALT_TIME::FALSE

DFS_EXTEND_RUN_TIME::FALSE
DFS_FINE_SEL::LEGACY DFS_FREQUENCY_MODE::LOW DFS_NON_STOP::FALSE
DFS_OSCILLATOR_MODE::PHASE_FREQ_LOCK DFS_SKIP_FINE::FALSE

DFS_TP_SEL::LEVEL
DFS_TRACKMODE::1 DI0INV::#OFF DI10INV::#OFF DI11INV::#OFF

DI12INV::#OFF
DI13INV::#OFF DI14INV::#OFF DI15INV::#OFF DI1INV::#OFF DI2INV::#OFF
DI3INV::#OFF DI4INV::#OFF DI5INV::#OFF DI6INV::#OFF DI7INV::#OFF
DI8INV::#OFF DI9INV::#OFF DLL_CONTROL_CLOCK_SPEED::HALF

DLL_CTL_SEL_CLKIN_DIV2::FALSE
DLL_DESKEW_LOCK_BY1::FALSE DLL_FREQUENCY_MODE::LOW

DLL_PD_DLY_SEL::0
DLL_PERIOD_LOCK_BY1::FALSE DLL_PHASE_DETECTOR_AUTO_RESET::TRUE

DLL_PHASE_DETECTOR_MODE::ENHANCED
DLL_PHASE_SHIFT_CALIBRATION::AUTO_DPS

DLL_PHASE_SHIFT_LOCK_BY1::FALSE
DUTY_CYCLE_CORRECTION::TRUE DWEINV::#OFF FREEZE_DFSINV::#OFF

FREEZE_DLLINV::#OFF
PMCD_SYNC::FALSE PSENINV::PSEN PSINCDECINV::PSINCDEC RSTINV::RST
STARTUP_WAIT::FALSE

DCM_ADV:DCM_AUTOCALIBRATION_DCM_clock/DCM_clock:
CLKIN_PERIOD::10.0000000000000000

DCM_PULSE_WIDTH_CORRECTION_HIGH::11111
DCM_PULSE_WIDTH_CORRECTION_LOW::11111 DCM_VBG_PD::00

DCM_VBG_SEL::0000
DCM_VREG_PHASE_MARGIN::010 DFS_COIN_WINDOW::00 DFS_HARDSYNC::00
DFS_SPARE::0000000000000000 DLL_DEAD_TIME::10

DLL_DESKEW_MAXTAP::210
DLL_DESKEW_MINTAP::42 DLL_LIVE_TIME::5 DLL_PHASE_SHIFT_HFC::206
DLL_PHASE_SHIFT_LFC::413 DLL_SETTLE_TIME::10

DLL_SPARE::0000000000000000
DLL_TEST_MUX_SEL::00 FACTORY_JF::C080 PHASE_SHIFT::0 "

;

HashMap<String,Instance>	instances;

DESIGN CLASS

String	name;
PrimitiveType type;
PrimitiveSite site;
ArrayList<Attribute>	attributes;	

INSTANCE CLASS

===
The syntax for instances is:
instance <name> <sitedef>, placed <tile> <site>, cfg <string> ;
or
instance <name> <sitedef>, unplaced, cfg <string> ;

For typing convenience you can abbreviate instance to inst.

For IOs there are two special keywords: bonded and unbonded
that can be used to designate whether the PAD of an unplaced IO is
bonded out. If neither keyword is specified, bonded is assumed.

The bonding of placed IOs is determined by the site they are placed in.

If you specify bonded or unbonded for an instance that is not an
IOB it is ignored.

Shown below are three examples for IOs.
instance IO1 IOB, unplaced ; # This will be bonded
instance IO1 IOB, unplaced bonded ; # This will be bonded
instance IO1 IOB, unplaced unbonded ; # This will be unbonded
===

inst "counter<18>" "SLICEL",placed CLB_X17Y51 SLICE_X27Y103 ,
cfg " BXINV::#OFF BYINV::#OFF CEINV::#OFF CLKINV::CLK COUTUSED::0

CY0F::0 CY0G::0 CYINIT::CIN DXMUX::XMUX DYMUX::YMUX
F:counter<18>_rt:#LUT:D=A1 _BEL_PROP::F:PK_PACKTHRU: F5USED::#OFF
FFX:counter_18:#FF FFX_INIT_ATTR::INIT0 FFX_SR_ATTR::SRLOW
FFY:counter_19:#FF FFY_INIT_ATTR::INIT0 FFY_SR_ATTR::SRLOW
FXMUX::FXOR FXUSED::#OFF G:counter<19>_rt:#LUT:D=A1
_BEL_PROP::G:PK_PACKTHRU: GYMUX::GXOR REVUSED::#OFF SRINV::#OFF
SYNC_ATTR::ASYNC XBUSED::#OFF XMUXUSED::#OFF XUSED::#OFF
YBUSED::#OFF YMUXUSED::#OFF YUSED::#OFF

CYMUXF:Mcount_counter_cy<18>: CYMUXG:Mcount_counter_cy<19>:
GNDF:ProtoComp1.GNDF.8: GNDG:ProtoComp1.GNDG.8:

XORF:Mcount_counter_xor<18>:
XORG:Mcount_counter_xor<19>:
_INST_PROP::XDL_SHAPE_MEMBER:Shape_0:0,9 "

String	physicalName;
String	logicalName;
String	value;

ATTRIBUTE CLASS

 Page | 16

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Figure 3 - Net, Pin and PIP Classes

There are other classes such as Module and ModuleInstance classes that abstract the macro-like property of
XDL which will be explained later. There are also enumeration classes such as InstanceType which are an
exhaustive list of all primitive types found in XDL and NetType which determines if a net is a WIRE, GND, or
VCC.

design.explorer Package
The design explorer loads XDL design files and allows the user a GUI interface to the design members
(Instances, Nets, Modules and Module Instances) with hyperlinks to the various other sites, tiles, modules and
instances. Currently the design explorer is read only although there is potential for it to be able to modify
designs. Below is a screenshot from the design explorer.

HashMap<String,Instance>	instances;

DESIGN CLASS

String	name;
NetType type;
ArrayList<Pin>	pins;

ArrayList<PIP>	pips;

Wire indicates that this a normal wire.
Power indicates that this net is tied to a DC power source.
You can use "power", "vcc" or "vdd" to specify a power net.

Ground indicates that this net is tied to ground.
You can use "ground", or "gnd" to specify a ground net.

The <dir> token will be one of the following:

Symbol Description
====== ==
== Bidirectional, unbuffered.
=> Bidirectional, buffered in one direction.
=- Bidirectional, buffered in both directions.
-> Directional, buffered.

No pips exist for unrouted nets.
==
net "GLOBAL_LOGIC0_11" gnd,

outpin "XDL_DUMMY_INT_X33Y26_TIEOFF_X33Y26" HARD0 ,
inpin "FFT_F/U_CNTRL/Madd_ADDRF_addsub0000_cy<1>" BX ,
pip CLB_X33Y26 BYP_INT_B5_INT -> BX_PINWIRE1 ,
pip INT_X33Y26 BOUNCE3 -> BYP_INT_B5 ,
pip INT_X33Y26 GND_WIRE -> BOUNCE3 ,
;

NET CLASS

boolean isOutputPin;
Instance	instance;
String	pinName;

PIN CLASS

Tile	tile;
int startWire;
Int endWire;

PIP CLASS

 Page | 17

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Figure 4 - Hyperlinks in Design Explorer

Recently, a timing report parser has been added which allows the timing information for a particular design to
be loaded at the same time as a design. This can be done through the file menu or through the tool bar with a
folder/clock icon. This timing report parser is still experimental and so mixed results may result depending on
the type of timing report and the device used.

 Page | 18

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Figure 5 - Timing report loaded in Design Explorer

design.parser Package
The XDL parser parses xdl design or hard macro files and populates the Design class accordingly. The parser is
a custom parser (previously a JavaCC parser was used but was ultimately abandoned) written exclusively for
RapidSmith.

device Package
This package works closely with the design package in that the specific Device class is loaded when a design is
loaded. The Xilinx XDLRC part descriptions partition the FPGA into a 2D grid of tiles. Each tile contains
some mixture of primitive sites, wires and PIPs (Programmable Interconnect Points). Primitive sites are
resource locations where XDL “inst” or instances of primitives are allowed to reside. Wires and PIPs provide
wiring and routing resources information to connect the primitive instances together to form a complete design.
With this information provided by Xilinx and leveraged by RapidSmith a number of different placement and
routing algorithms can be constructed by leveraging the APIs in this package.

The device package also contains a class called WireEnumerator. All of the wires in a family are enumerated to
an integer so they do not need to be stored as Strings. The WireEnumerator class helps translates wires from
integers to Strings and vice versa. It also keeps track of important information about wires such as the type of
wire (DOUBLE, HEX, PENT, …) and wire direction (NORTH, SOUTH, EAST, …) among other attributes.

 Page | 19

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

device.browser Package
The device browser application allows the user to see a color coded tile array that allows them to browse any
installed device. The primitive and wire lists are populated by double clicking a tile. The user can zoom in and
out using the mouse wheel and can also pan by holding down the right mouse button while moving the mouse.
See below for a screenshot of the application.

Figure 6 - Device Browser screenshot

The device browser also allows the user to follow the various connections found in the FPGA. By double
clicking a wire in the wire list, the application will draw the connection on the tile array (as shown in the
screenshot below). By hovering the mouse pointer over the connection, the wire becomes red and a tooltip will
appear describing the connection made by declaring the source tile and wire followed by an arrow (->) and the
destination tile and wire. By clicking on the wire, the application will redraw all the connections that can be
made from the currently selected wire. By repeating this action, the user can follow connections and discover
how the FPGA interconnect is laid out.

 Page | 20

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Figure 7 - Device browser screenshot showing wire connections

device.helper Package
This package contains special classes to help pack the device files smaller. They are generally used only during
installation.

examples Package
This package contains some examples of how to get started with RapidSmith and some different ways of using
the various APIs available.

placer Package
This package still has yet to be completed but will have an example of a placer.

primitiveDefs Package
In the XDLRC descriptions produced by the Xilinx ‘xdl’ executable, each copy has a section at the end called
primitive_defs which has a list of primitive definitions for all types of primitives found in the part. The
primitiveDefs packages makes that information available in a convenient data structure to access the attributes
and various parameters the primitives can be configured with.

 Page | 21

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

router Package
This package has an example of a basic router that routes Virtex 4 and Virtex 5 designs. It also contains an
abstract class for which routers can be built upon.

tests Package
In order to help ensure correct functionality in RapidSmith as it grows, a tests package has been added to hold
all of the different tests that can be performed to check for correct functionality with each new update.
Currently, this package contains a class for testing the device, primitive defs and wire enumerator files (it is the
class used to create the statistical information on RapidSmith files found in the Appendix).

timing Package
A new experimental package that contains a timing report parser (TWR files output from Xilinx Trace) has
been added. This can parse a TWR file into a basic data structure contained in the timing package. This parser
has been integrated into the design explorer application in RapidSmith.

util Package
This has miscellaneous classes used for support of all other packages. It is suggested to have the user browse
the JavaDoc API descriptions to get a better feel for what is contained in the util package.

Examples
Hello World
To get started programming with RapidSmith, here is an example of a very simple program.
/*
 * Copyright (c) 2010 Brigham Young University
 *
 * This file is part of the BYU RapidSmith Tools.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License..
 *
 */
package edu.byu.ece.rapidSmith.examples;

import java.util.HashMap;
import edu.byu.ece.rapidSmith.design.*;
import edu.byu.ece.rapidSmith.device.*;

/**
 * A simple class to illustrate how to use some of the basic methods in RapidSmith.
 * @author Chris Lavin
 */
public class HelloWorld{
 public static void main(String[] args){
 // Create a new Design from scratch rather than load an existing design
 Design design = new Design();

 Page | 22

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

 // Set its name
 design.setName("helloWorld");

 // When we set the part name, it loads the corresponding Device and
 // WireEnumerator. Always include package and speed grade with the part name.
 design.setPartName("xc4vfx12ff668-10");

 // Create a new instance
 Instance myInstance = new Instance();
 myInstance.setName("Bob");
 myInstance.setType(PrimitiveType.SLICEL);
 // We need to add the instance to the design so it knows about it
 design.addInstance(myInstance);
 // Make the F LUT an Inverter Gate
 myInstance.addAttribute(new Attribute("F","LUT_of_Bob","#LUT:D=~A1"));

 // Add the instance to the design
 design.addInstance(myInstance);

 // This is how we can get the reference to the instance from the design,
 // by name
 Instance bob = design.getInstance("Bob");

 // Let's find a primitive site for our instance Bob
 HashMap<String, PrimitiveSite> primitiveSites =
 design.getDevice().getPrimitiveSites();
 for(PrimitiveSite site : primitiveSites.values()){
 // Some primitive sites can have more than one type reside at the site, such as
 // SLICEM sites which can also have SLICELs placed there. Checking if the site
 // is compatible makes sure you get the best possible chance of finding a place
 // for bob to live.
 if(site.isCompatiblePrimitiveType(bob.getType())){
 // Let's also make sure we don't place bob on a site that is already used
 if(!design.isPrimitiveSiteUsed(site)){
 bob.place(site);
 System.out.println("We placed bob on tile: " + bob.getTile() +
 " and site: " + bob.getPrimitiveSiteName());
 break;
 }
 }
 }

 // Another way to find valid primitive sites if we want to use an exclusive site type
 PrimitiveSite[] allSitesOfTypeSLICEL =
 design.getDevice().getAllSitesOfType(bob.getType());
 for(PrimitiveSite site : allSitesOfTypeSLICEL){
 // Let's also make sure we don't place bob on a site that is already used
 if(!design.isPrimitiveSiteUsed(site)){
 bob.place(site);
 System.out.println("We placed bob on tile: " + bob.getTile() +
 " and site: " + bob.getPrimitiveSiteName());
 break;
 }
 }

 // Let's create an IOB to drive our Inverter gate in Bob's LUT
 Instance myIOB = new Instance();
 myIOB.setName("input");
 myIOB.setType(PrimitiveType.IOB);
 design.addInstance(myIOB);
 // These are typical attributes that need to be set to configure the IOB
 // the way you like it
 myIOB.addAttribute(new Attribute("INBUFUSED","","0"));
 myIOB.addAttribute(new Attribute("IOATTRBOX","","LVCMOS25"));
 // Another way to find a primitive site is by name, this is the pin name
 // that you might find in a UCF file
 myIOB.place(design.getDevice().getPrimitiveSite("C17"));

 Page | 23

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

 // Let's also create a new net to connect the two pins
 Net fred = new Net();
 // Be sure to add fred to the design
 design.addNet(fred);
 fred.setName("fred");
 // All nets are normally of type WIRE, however, some are also GND and VCC
 fred.setType(NetType.WIRE);
 // Add the IOB pin as an output pin or the source of the net
 fred.addPin(new Pin(true,"I",myIOB));
 // Add Bob as the input pin or sink, which is the input to the inverter
 fred.addPin(new Pin(false, "F1", bob));

 // Now let's write out our new design
 // We'll print the standard XDL comments out
 String fileName = design.getName() +".xdl";
 design.saveXDLFile(fileName, true);

 // We can load XDL files the same way.
 Design inputFromFile = new Design();
 inputFromFile.loadXDLFile(fileName);

 // Hello World
 System.out.println(inputFromFile.getName());
 }
}

Hand Router
This is a command-line-based router than allows a user to route one net at a time and write out the design
changes afterwards. Although not particularly useful as a router, it illustrates how RapidSmith could be used to
build a router.

Part Tile Browser
This GUI will let you browse Virtex 4 and 5 parts at the tile level. On the left, the user may choose the desired
part by navigating the tree menu and double-clicking on the desired part name. This will load the part in the
viewer pane on the right (the first available part is loaded at startup). The status bar in the bottom left displays
which part is currently loaded. Also displayed is the name of the current tile which the mouse is over,
highlighted by a yellow outline in the viewer pane. The user may navigate inside the viewer pane by using the
mouse. By right-clicking and dragging the cursor, the user may pan. By using the scroll-wheel on the mouse,
the user may zoom. If a scroll-wheel is unavailable, the user may zoom by clicking inside the viewer pane and
pressing the minus(-) key to zoom out or the equals(=) key to zoom in. See below for a screenshot.

 Page | 24

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Figure 8: Screenshot of Part Tile Browser

 Page | 25

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

UNDERSTANDING XDL
What is XDL?
XDL (or Xilinx Design Language, see ISE 6.1 documentation in help/data/xdl folder) is a human-
readable ASCII format compatible with the more widely used Xilinx format NCD (or Netlist Circuit
Description). XDL has most if not all the same capabilities of the NCD format and Xilinx provides an
executable called xdl which can convert NCD designs to XDL and vice versa (run “xdl –h” for details).
XDL and NCD are both native Xilinx netlist formats for describing and representing Xilinx FPGA designs.
XDL is the interface used by RapidSmith to insert and extract design information at different points in the
Xilinx design flow.

XDL can represent designs that are:

• Mapped (unplaced and unrouted)
• Partially placed and unrouted
• Partially placed and partially routed
• Fully placed and unrouted
• Fully placed and partially routed
• Fully placed and fully routed
• Contain hard macros and instances of hard macros
• A hard macro definition (equivalent to Xilinx NMC files)

Figure 9: Block diagram of where XDL fits in CAD flow.

RapidSmith provides some Java methods that can perform the XDL/NCD conversion (by calling the xdl
executable) from within Java in the util.FileConverter class. It also has methods for calling a number
of Xilinx programs from within the RapidSmith environment.

Xilinx
map

Xilinx

par –p
(route only)

Xilinx

par –r
(place only)

.NCD .NCD .NCD

Xilinx
xdl

Xilinx
xdl

Xilinx
xdl

.XDL.XDL.XDL

BYU
RapidSmith Tools

Xilinx
bitgen

.BIT

 Page | 26

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

The Xilinx xdl executable also contains options for generating report files (with extension .XDLRC) which
contain descriptive information about a particular Xilinx part. XDLRC report files have a different format to
that of XDL (as they describe an FPGA rather than a design) and depending on the options given can create
enormous files (several gigabytes) of text but are quite complete in describing the primitive sites, routing
resources and tile layout of a Xilinx FPGA. RapidSmith makes uses of these XDLRC files by generating them
and parsing them into much smaller device files that can them be used with the rest of the RapidSmith API.

DISCLAIMER: The user must be aware that XDL is an externally unsupported format by Xilinx. All
questions about XDL and any problems associated with XDL or this tool should NOT be addressed to Xilinx,
but through the RapidSmith website and forum. The RapidSmith project is merely a tool to make use of the
XDL software technical interface and cannot be used without a valid and current license for the Xilinx ISE
tools. The RapidSmith project is at the mercy of Xilinx in the availability of XDL and will attempt to
accommodate updates and changes to the interface as they arise.

Basic Syntax of XDL Files
XDL is a self-documenting file format in that each type of statement is generally preceded by comments that
explain the syntax. Comments in XDL are denoted by using a ‘#’ character at the beginning of a line. The ‘#’
is also used in other constructs that are part of the language that do not fall on the beginning character of the
line. In XDL there are four basic statements that make up the entire content of the file and description of the
circuit.

Design Statement
The design statement (represented as the design.Design class) is included in every XDL file (even hard
macros) and there is only one design statement in a file. It includes global information such as the design name
and part name of the targeted FPGA. It can also contain a list of attributes in a ‘cfg’ string. Below is an
example of a design statement.

Module Statement
Modules (represented as the design.Module class) are collections of instances and nets which can be
described as hard macros if the instances are placed and nets are routed. A module will have a list of ports that
determine the interface of the hard macro or module and each module will have its own list of instances and
nets to describe the logic inside. An abbreviated module statement is shown below.

===

The syntax for the design statement is:

design <design_name> <part> <ncd version>;

or

design <design_name> <device> <package> <speed> <ncd_version>

===

design "designName" xc4vfx12ff668-10 v3.2 ,

 cfg "

 _DESIGN_PROP::BUS_INFO:4:OUTPUT:gpio<3:0>

 _DESIGN_PROP::PIN_INFO:gpio<0>:/top/PACKED/top/gpio<0>/PAD:OUTPUT:3:gpio<3\:0>

 _DESIGN_PROP::PIN_INFO:gpio<1>:/top/PACKED/top/gpio<1>/PAD:OUTPUT:2:gpio<3\:0>

 _DESIGN_PROP::PIN_INFO:gpio<2>:/top/PACKED/top/gpio<2>/PAD:OUTPUT:1:gpio<3\:0>

 _DESIGN_PROP::PIN_INFO:gpio<3>:/top/PACKED/top/gpio<3>/PAD:OUTPUT:0:gpio<3\:0>

 _DESIGN_PROP::PK_NGMTIMESTAMP:1231972339";

 Page | 27

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Instance Statement
The instance statement (represented as the design.Instance class), which begins with the keyword ‘inst’,
is an instance of an FPGA primitive which can be placed or unplaced depending if a tile and primitive site
location are specified. The instance also has a primitive type (such as SLICEL, SLICEM, DCM_ADV, …).
Instance names should be unique in a design to avoid problems in RapidSmith. Instances are configured with a
‘cfg’ string which is a list of attributes that define LUT content, and other functionality. An example of an
instance statement is shown below.

Net Statement
The net statement (represented as the design.Net class) are the nets that describe inputs/outputs and routing
of nets in a design. Nets can be of 3 different types: GND, VCC, or WIRE. The GND and VCC keyword must
be present to mark a net as being sourced by ground or power, the keyword WIRE is not required as it is the
default type. Nets also must have a unique name when compared with all other nets. Nets have two sub
components to describe them: pins and PIPs. An example of a net statement is shown below.
Pins (represented as the design.Pin class) define the source and one or more sinks within the net. A pin is
uniquely identified by the name of the instance where the pin resides as well as the internal name of the pin on
this instance. It also has a direction of being an ‘outpin’ (source) or an ‘inpin’ (sink). A net can only have one
source or ‘outpin’ in the net. It should also be noted that Xilinx added a ‘inout’ pin type specifically for the
Zynq parts. These are a special case and should be treated as such.

===
The syntax for modules is:
module <name> <inst_name> ;
port <name> <inst_name> <inst_pin> ;
.
instance ... ;
.
net ... ;
.
endmodule <name> ;
===
module "moduleName" "anchorInstanceName" , cfg "_SYSTEM_MACRO::FALSE" ;
 port "portName1" "anchorInstanceName" "F2";
 port "portName2" "anotherInstanceInTheModule" "F4";
...
 inst "anchorInstanceName" "SLICEL", placed CLB_X14Y4 SLICE_X23Y8 , …
...
 net "aNetInsideTheModule" , …
...
endmodule "moduleName";

inst "instanceName" "SLICEL",placed CLB_X14Y4 SLICE_X23Y8 ,

 cfg " BXINV::#OFF BYINV::#OFF CEINV::#OFF CLKINV::#OFF COUTUSED::#OFF CY0F::#OFF
CY0G::#OFF CYINIT::#OFF DXMUX::#OFF DYMUX::#OFF F::#OFF F5USED::#OFF FFX::#OFF
FFX_INIT_ATTR::#OFF FFX_SR_ATTR::#OFF FFY::#OFF FFY_INIT_ATTR::#OFF
FFY_SR_ATTR::#OFF FXMUX::#OFF FXUSED::#OFF
G:DCM_AUTOCALIBRATION_DCM_clock/DCM_clock/md/RSTOUT1:#LUT:D=A1
_BEL_PROP::G:LIT_NON_USER_LOGIC:DCM_STANDBY GYMUX::#OFF REVUSED::#OFF SRINV::#OFF
SYNC_ATTR::#OFF XBUSED::#OFF XMUXUSED::#OFF XUSED::#OFF YBUSED::#OFF
YMUXUSED::#OFF YUSED::0 "

 ;

 Page | 28

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

PIPs (programmable interconnect points, represented by the design.PIP class) define routing resources used
within the net to complete routing connections between the source and sinks. A PIP is uniquely described as
existing in a tile (ex: INT_X2Y3) and two wires with a connection between them. Almost all PIPs are
unidirectional (‘->’) in that they can only go in one direction. Long lines are the one exception to that rule as
they are bidirectional and are denoted by using a ‘-=’ symbol, however RapidSmith uses the ‘->’ symbol for
all PIPs as this does not cause the xdl converter any problems.

Basic Syntax of XDLRC Files
XDLRC files are report files generated by the Xilinx xdl executable. During installation, RapidSmith will
create XDLRC files and parse them for their pertinent information and then pack it into small device files that
can be used later with the tool. Each construct found in XDLRC files and the corresponding RapidSmith
representation is described in the remainder of this subsection.

Tiles

Tiles (represented in the device.Tile class) are the building blocks of Xilinx FPGAs. Every FPGA is
described as 2D array or grid of tiles laid out like a checker board (this can be seen also in the Part Tile Browser
example). Each tile is declared with a “(tile” directive as shown above followed by the unique row and
column index of where the tile fits into the grid of tiles found on the FPGA. The tile declaration also contains a
name followed by a type with the final number being the number of primitive sites found within the tile. The
tile ends with a “tile_summary” statement repeating the name and type with some other numbered statistics.
Tiles can contain three different sub components, primitive sites, wires, and PIPs.

Primitive Sites

Example of an XDLRC tile declaration
 (tile 1 14 CLB_X6Y63 CLB 4
…
 (tile_summary CLB_X6Y63 CLB 122 403 148)
)

Example of an XDLRC primitive site declaration
 (primitive_site SLICE_X9Y127 SLICEL internal 27
 (pinwire BX input BX_PINWIRE3)
 (pinwire BY input BY_PINWIRE3)
 (pinwire CE input CE_PINWIRE3)
 …
 (pinwire XMUX output XMUX_PINWIRE3)
)

net "netName" ,
 outpin "instanceNameOfSourcePin" Y ,
 inpin "instanceNameOfSinkPin" RST ,
 pip CLB_X14Y4 Y_PINWIRE1 -> BEST_LOGIC_OUTS5_INT ,
 pip DCM_BOT_X15Y4 SR_B0_INT3 -> DCM_ADV_RST ,
 pip INT_X14Y4 BEST_LOGIC_OUTS5 -> OMUX8 ,
 pip INT_X15Y5 OMUX_EN8 -> N2BEG0 ,
 pip INT_X15Y7 N2END0 -> SR_B0 ,
 ;

 Page | 29

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Primitive sites (represented in the device.PrimitiveSite class) are declared in tiles. A primitive site is a
location on the FPGA that allows for an instance of that primitive type (primitive types are enumerated in the
device.PrimitiveType enum) to reside. For example, in the declaration of a SLICEL primitive site
above, any SLICEL instance can be placed at that site. A primitive site has a unique name (SLICE_X9Y127)
and type (SLICEL). However, in some cases, more than one primitive type is compatible with a given
primitive site. One example of this is the primitive type SLICEM (Virtex 4 slices that contain RAM
functionality in the LUT among other enhancements to the SLICEL type) is a superset of SLICEL functionality.
Therefore, a SLICEL primitive instance can be placed in a SLICEM primitive site. RapidSmith allows the
developer to determine if a given site is compatible in the device.PrimtiveSite class using the method
isCompatiblePrimitiveType(PrimitiveType otherType).

Primitive site declarations in XDLRC also contain a list of pinwires which describe the name and direction of
pins on the primitive site. The first pinwire declared in the example above is the BX input pin which is the
internal name to the SLICEL primitive site. Pinwires have an external name as well to differentiate the multiple
primitive sites that may be present in the same tile. In this case, BX of SLICE_X9Y127 has the external name
BX_PINWIRE3. RapidSmith provides mechanisms to translate between these two names in the
device.PrimitiveSite class with the method getExternalPinName(String internalName).

Wire

A wire as declared in XDLRC is a routing resource that exists in the tile that may have zero or more
connections leaving the tile. In the example above, the wire E2BEG0 connected to 5 other neighboring tiles.
These connections (denoted by ‘conn’) are described using the unique tile name and wire name of that tile to
denote connectivity. These connections are not programmable, but hard wired into the FPGA. Inter-tile
connections are not programmable, however, intra-tile connections (PIPs, see below) are. RapidSmith must
represent the routing resources of Xilinx FPGAs very carefully as a significant fraction of the FPGA description
is routing. Therefore, the wire names (such as E2BEG0, …) are enumerated into integers or Java primitive int
data types using the device.WireEnumerator class. The WireEnumerator class keeps track of what
integer value goes with each wire name and allows for significant compaction of the FPGA routing description.

The wire connections are described using a relative tile offset to reuse data structure elements. The class used
to represent these wires and corresponding connections is in the device.WireConnection class.

PIP

A PIP (programmable interconnect point) is a possible connection that can be made between two wires. In the
example above the PIP is declared in the tile and repeats the tile name for reference. It specifies two wires by
name that both exist in that same tile (BEST_LOGIC_OUTS0 and BYP_INT_B5) and declares that the wire
BEST_LOGIC_OUTS0 can drive the wire BYP_INT_B5 if the PIP exists in a net’s PIP list in a given design.

Example of an XDLRC wire declaration
 (wire E2BEG0 5
 (conn CLB_X7Y63 CLB_E2BEG0)
 (conn INT_X8Y63 E2MID0)
 (conn CLB_X8Y63 CLB_E2MID0)
 (conn INT_X9Y63 E2END0)
 (conn INT_X9Y62 E2END_S0)
)

Example of an XDLRC PIP declaration
 (pip INT_X7Y63 BEST_LOGIC_OUTS0 -> BYP_INT_B5)

 Page | 30

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

A collection of these PIPs in a net define how a net is routed and is consistent with saying that those PIPs are
“turned on.” The connections are also represented in the device.WireConnection class as connections
with a special flag denoting the connection as a PIP.

Primitive Definitions
At the end of every XDLRC file (regardless of verboseness) is a list of all primitive definitions for the Xilinx
part. Primitive definitions are used mainly for reference and are reflected in the primitiveDefs.* package.
In more recent Xilinx parts, some of the primitive definitions have been found to lack some information which
may require special handling in RapidSmith. Currently, the primitive definitions are not widely used in
RapidSmith.

 Page | 31

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

RAPIDSMITH STRUCTURE
This section details much of the complexity and theory behind the structure of RapidSmith. There are two main
abstractions that developers need to be aware of; that of the device and design. A hierarchy of classes within
RapidSmith can be seen in Figure 6 below.

Figure 10: (a) The classes involved in defining a design in RapidSmith, (b) The major classes involved representing a device.

A RapidSmith Design
Designs in RapidSmith are represented and stored in the data structures found in the design package. The
classes found in this package closely follow the constructs found in XDL design files to make the classes easier
to follow and make the abstraction understandable to those who are familiar with XDL. For those who have
less experience with XDL, see the previous section on understanding XDL.

Loading Designs
There is typically only one way to load a design with RapidSmith and that is to create a new design and call the
method loadXDLDesign(String fileName) on that instance of the design. An NCD file can also be
loaded indirectly by using methods in the util.FileConverter class which enables the conversion of an
existing NCD file to XDL by calling the Xilinx xdl executable. Example code of how this could be done is
shown below:
 // Loading an XDL design
 Design myDesign = new Design();
 myDesign.loadXDLFile("myDesign.xdl");

 // Loading an existing NCD file by converting it to XDL
 String ncdFileName = "myOtherDesign.ncd";
 String xdlFileName = FileConverter.convertNCD2XDL(ncdFileName);
 if(xdlFileName == null){
 MessageGenerator.briefErrorAndExit("ERROR: Conversion of " +
 ncdFileName + " to XDL failed.");
 }
 Design otherDesign = new Design();
 otherDesign.loadXDLFile(xdlFileName);

Design

Instance

PrimitiveType

Attribute	
(List)

PrimitiveSite

Net

NetType

Pin	(List)

PIP	(List)

Module

Port	
(List)

Instance	
(List)

Net	(List)

ModuleInstance

Instance	
(List)

Net	(List)

Device

Tile	(2D	Array)

TileType PrimitiveSite
(Array)

PrimitiveType

Tile

Wire

(a) (b)

 Page | 32

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

When loading a design, one must be conscious of everything that gets loaded. In RapidSmith, a JavaCC-based
XDL parser (found in the design.parser package) reads and parses the given XDL file and populates the
instance of the Design class respectively. When the parser populates the design with the design part name, it
causes the corresponding device file of the Xilinx part as well as the wire enumerator to be loaded and
populates the design. This is done be default because the primitive sites and wires in the design reference those
same resources in the device class.

Saving Designs
RapidSmith also has a method to save designs in the XDL format similar to the method for loading them. In a
similar manner, the saved XDL file can be converted to NCD using the FileConverter class. Very little
error checking is made when loading and saving XDL designs, but a good test would be the conversion to NCD
as Xilinx runs several DRCs when the design is converted.

A RapidSmith Device
A device is defined in RapidSmith as a unique Xilinx FPGA part that includes package information but not
speed grade (such as xc4vfx12ff668). Each device contains specific information concerning its primitive sites,
tiles, wires, IOBs, and PIPs that are available to realize designs. This information is made available through the
Xilinx executable xdl in -report mode. See the previous section on XDLRC for more details on these
device resources.

Device
During the initial setup of RapidSmith, the Installer creates fully verbose XDLRC files ($xdl –report –
pips –all_conns <partName>) for each device specified as command line parameters. After the
creation of each XDLRC file, they are parsed, compacted by the Installer, and a device file is generated for later
use. These device files are placed in
$(RAPIDSMITH_PATH)/devices/familyName/partName_db.dat and then the corresponding
XDLRC file is deleted as they can be several gigabytes in size. These device files make accessing device
information about a specific FPGA part much more convenient than a gigantic text file. Most of the device files
are just a few megabytes or less and can be loaded in a few seconds or less. RapidSmith uses a custom form of
serialization as well as a compression library to make sure the device files are small and load quickly.

Wire Enumerator
In order to make the device files small, each uniquely named wire is assigned to an integer as enumeration.
This avoids moving strings around in memory which would be costly in terms of space and comparison times.
RapidSmith has a class called WireEnumerator which enumerates all uniquely named wires in an FPGA
family and has methods to convert to and from the wire name and enumeration or enum for short. It also stores
information about each wire such as a direction or type which can be useful in building a router. Note that
wires with the same name can occur several times within a device and they are uniquely identified not only by
their name, but also by the tile in which they are present.

In order to create the wire enumeration files, a subset of XDLRC files must be parsed so that a complete set of
wires can be enumerated. This is automatically done by the installer and the files are placed in
$(RAPIDSMITH_PATH)/devices/familyName/wireEnumerator.dat. Only one wire enumerator
is needed per FPGA family.

 Page | 33

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Memory and Performance
Although Java typically has a reputation for being slow and a memory hog, RapidSmith has been able to create
a very good device representation that is compact and fast loading, even for some of the largest parts offered by
Xilinx. A summary of some performance and memory footprint figures are shown in the tables below for
selected parts. These results were taken a Windows 7 Enterprise 64-bit OS with an Intel Core i7 860 running at
2.8GHz. The test machine had 8 GB of DDR3 memory, a conventional 1 TB SATA hard drive and was using
version 0.5.0 of RapidSmith and the 32-bit Oracle JVM version 1.6.0_22. Note that the Device and
WireEnumerator classes are both required before loading any design in RapidSmith. For a more extensive
list of performance figures of all RapidSmith-compatible devices, see the Appendix.

Device Performance and Memory Usage

Family	Name	 Part	Name	
XDLRC	Report	

Size	 File	Size	 Java	Heap	Size	
Load	Time	
from	Disk	

VIRTEX	4	 SX55	 3.5GB	 539KB	 34MB	 0.299s	
VIRTEX	4	 FX140	 8.0GB	 1546KB	 70MB	 0.616s	
VIRTEX	4	 LX200	 10.0GB	 1010KB	 61MB	 0.602s	
VIRTEX	5	 FX200T	 9.4GB	 1227KB	 60MB	 0.585s	
VIRTEX	5	 TX240T	 10.0GB	 1111KB	 56MB	 0.620s	
VIRTEX	5	 SX240T	 11.9GB	 1135KB	 61MB	 0.630s	
VIRTEX	5	 LX330	 12.5GB	 1069KB	 69MB	 0.622s	
VIRTEX	6	 CX240T	 8.5GB	 937KB	 35MB	 0.460s	
VIRTEX	6	 SX475T	 17.7GB	 1506KB	 61MB	 0.814s	
VIRTEX	6	 LX760	 22.8GB	 1758KB	 77MB	 1.068s	
VIRTEX	7	 855T	 32.0GB	 2634KB	 115MB	 1.408s	
VIRTEX	7	 1500T	 53.0GB	 4985KB	 263MB	 2.653s	
VIRTEX	7	 2000T	 73.6GB	 5956KB	 301MB	 3.339s	

Wire Enumerator Size and Performance

Family	Name	 Heap	Memory	
Footprint	

File	Size	on	
Disk	

Load	Time	from	
Disk	

VIRTEX4	 233KB	 8.1MB	 0.100s	
VIRTEX5	 264KB	 9.9MB	 0.111s	
VIRTEX6	 171KB	 6.3MB	 0.079s	
VIRTEX7	 200KB	 7.4MB	 0.096s	

 Page | 34

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

PLACEMENT IN RAPIDSMITH
This chapter is intended to help users of RapidSmith understand how placement works in RapidSmith and in
XDL.

Primitive Resources in RapidSmith
RapidSmith uses the XDLRC primitive definitions and sites declared to help create a map of useable places
where objects may be placed. In order to understand placement in RapidSmith, let’s review the following:
primitive sites, primitive definitions and types, and primitive instances.

Primitive Site
A primitive site is an actual physical location in an FPGA. Let’s take a look at a typical primitive_site
declaration found in an XDLRC report for a Virtex 4:

 (primitive_site SLICE_X1Y121 SLICEL internal 27
 (pinwire BX input BX_PINWIRE1)
 (pinwire BY input BY_PINWIRE1)
 (pinwire CE input CE_PINWIRE1)
 (pinwire CIN input CIN1)
 (pinwire CLK input CLK_PINWIRE1)
 (pinwire SR input SR_PINWIRE1)
 (pinwire F1 input F1_PINWIRE1)
 (pinwire F2 input F2_PINWIRE1)
 (pinwire F3 input F3_PINWIRE1)
 (pinwire F4 input F4_PINWIRE1)
 (pinwire G1 input G1_PINWIRE1)
 (pinwire G2 input G2_PINWIRE1)
 (pinwire G3 input G3_PINWIRE1)
 (pinwire G4 input G4_PINWIRE1)
 (pinwire FXINA input FXINA1)
 (pinwire FXINB input FXINB1)
 (pinwire F5 output F51)
 (pinwire FX output FX1)
 (pinwire X output X_PINWIRE1)
 (pinwire XB output XB_PINWIRE1)
 (pinwire XQ output XQ_PINWIRE1)
 (pinwire Y output Y_PINWIRE1)
 (pinwire YB output YB_PINWIRE1)
 (pinwire YQ output YQ_PINWIRE1)
 (pinwire COUT output COUT1)
 (pinwire YMUX output YMUX_PINWIRE1)
 (pinwire XMUX output XMUX_PINWIRE1)
)

This declaration is found inside of a tile declaration in XDLRC reports which denotes where the primitive site is
located on the FPGA. Every primitive site belongs to a tile. If you open the Virtex 4 FX12 part in the Device
Browser, you could find the primitive site SLICE_X1Y121 as shown in the screenshot below. You would find
that it belongs to the tile CLB_X1Y60.

 Page | 35

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Figure 11 – Device Browser screenshot showing site SLICE_X1Y121 in tile CLB_X1Y60

Primitive sites all have a unique name (SLICE_X1Y121 in this example) to uniquely identify each one.
Although the XY coordinates in the name help reference their location, they are not found in all primitive site
names (IOBM/IOBS sites being a common example). Each site also has a type associated with it. RapidSmith
enumerates all of the primitive types in the device.PrimitiveType enum.

Primitive Definitions and Types
Each Xilinx FPGA family has a list of primitive definitions which appear at the end of every XDLRC report in
the primitive_defs declaration. A list of primitive_def declarations are contained in this
declaration, each detailing the inputs, outputs, elements, and configurations of each primitive. Theses
definitions are stored in the primitiveDefs package found in RapidSmith and are easily accessible using
the data structures created. The names of each of the primitive definitions are called primitive types in
RapidSmith. The PrimitiveType enum found in the device package contains all of the primitive types found in
every Xilinx FPGA family supported in RapidSmith (see Appendix C for a complete list).

Primitive Instances
A primitive instance (or instance for short) is an actual instantiation of a primitive definition and is the same
instance as declared in XDL “inst” constructs. These instances are represented in the design package using the
Instance class. Each instance has a unique name and primitive type associated with it and can be placed or
unplaced in an XDL design. When an instance is unplaced, it will have the keyword “unplaced” in its
declaration. When an instance is placed, it will have the keyword placed followed by a tile name and a
primitive site name (such as CLB_X1Y60 SLICE_X1Y121). An example of the first part of an instance
declaration is shown below:

inst "instanceName" "SLICEL",placed CLB_X1Y60 SLICE_X1Y121 ,
…

 Page | 36

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Placement
Placement occurs by assigning an instance to a specific primitive site on the FPGA. Generally, an instance of
type X can only be placed on a primitive site of type X. However, there are some exceptions where type X can
actually be placed onto more than just the primitive site of the same type. A common example in modern
devices is that a SLICEL instance can be placed on either a SLICEL primitive site or a SLICEM primitive site.
There are actually several scenarios where this exception occurs. Sometimes, a primitive site of the same type
never occurs on the FPGA fabric such as an IOB primitive type. IOB primitives must be placed on either an
IOBM or IOBS primitive site.

In order to help avoid the special cases in placement with different primitive types, RapidSmith includes all of
the legal placement types in the PrimitiveSite class and they can be accessed with the following methods:

/**
* This method will check if the PrimitiveType otherType can be placed
* at this primitive site. Most often only if they are
* equal can this be true. However there are a few special cases that require
* extra handling. For example a SLICEL can reside in a SLICEM site but not
* vice versa.
* @param otherType The primitive type to try to place on this site.
* @return True if otherType can be placed at this primitive site, false otherwise.
*/
public boolean isCompatiblePrimitiveType(PrimitiveType otherType);

/**
 * This method gets the type of otherSite and calls the other method
 * public boolean isCompatiblePrimitiveType(PrimitiveType otherType);
 * See that method for more information.
 * @param otherSite The other site to see if its type is compatible with this site.
 * @return True if compatible, false otherwise.
 */
public boolean isCompatiblePrimitiveType(PrimitiveSite otherSite);

Placement Techniques
Currently RapidSmith only has a very limited random placer which is found in the placer package.

 Page | 37

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

ROUTING IN RAPIDSMITH
This chapter is intended to help users and developers in understanding how routing resources are handled in
RapidSmith. It also illustrates how to build on the existing classes to create custom routers.

Wire Resources in RapidSmith
RapidSmith has a unique way of representing wires and connections for Xilinx devices. This approach was
developed mainly to minimize disk and memory usage while also maintaining some level of efficiency and
speed.

Wire Representation
The wire enumerator class keeps a list of all uniquely XDLRC-named wires that exist in a given Xilinx FPGA
family. Wires can span multiple tiles in the FPGA, however, the wire has a separate name for each tile in which
it crosses. An example of this concept is illustrated in the DOUBLE lines found in several family architectures.
A DOUBLE line is a wire that connects switch boxes either one or two hops away in a given direction. An
example of this layout is given in Figure 7.

Figure 12 - A DOUBLE line in an FPGA illustrating how each part of the wire has a different name depending on the tile it is

located in.
In this example, we see a wire that can be driven by one point, E2BEG4, and can drive either E2MID4 in tile
INT_X2Y1 and/or E2END4 in tile INT_X3Y1. However, the wire is assigned a name as it travels through the
CLB tiles (CLB_E2BEG4 and CLB_E2MID4). For the purposes of RapidSmith, these wires have been
removed from device files as they do not contribute to the overall possible connections a wire can make and
simply add overhead to the device data structures. This technique has actually dramatically reduced the size of
the devices files and improved routing speed as dead-end connections do not need to be examined.

In RapidSmith, these uniquely-named wire segments are represented either as a String or as an int or
Integer. Often it is represented as an integer to save space and increase comparison speed with other wires.
To illustrate how this representation works, here is some example Java code that exposes the wire segments:

 // Load the appropriate Device and WireEnumerator
 // (this is done automatically when loading XDL designs)
 String partName = "xc4vfx12ff668";
 Device dev = FileTools.loadDevice(partName);
 WireEnumerator we = FileTools.loadWireEnumerator(partName);
 // Here we pick a wire name
 String wireName = "E2BEG4";
 // Here we get the integer enum value for that wire name
 int wire = we.getWireEnum(wireName);
 // The wire enumerator also keeps information about these wire segments

INT_X1Y1 CLB_X1Y1 INT_X2Y1 CLB_X2Y1 INT_X3Y1

E2BEG4 E2MID4 E2END4CLB_E2BEG4 CLB_E2MID4

 Page | 38

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

 // such as wire direction and type
 WireDirection direction = we.getWireDirection(wire);
 WireType type = we.getWireType(wire);

Now, there are actually several wires in an FPGA device with the same name. The wire E2BEG4 exists in
almost every switch box tile in the FPGA. To uniquely identify routing resources in a device, a tile and its
name or wire enumeration is required (that is, INT_X1Y1 E2BEG4 is its unique representation).

In an effort to save space and ultimately reuse much of the routing connections, the WireConnection class
is used to represent internal and external tile connections. Each tile has a special hash map where the key is the
integer enum value of the wire and the value is an array of WireConnection objects. Each
WireConnection object contains the following information to define a connection:

 /** The wire enumeration value of the wire to be connected to */
 private int wire;
 /** The tile row offset from the source wire's tile */
 private int rowOffset;
 /** The tile column offset from the source wire's tile */
 private int columnOffset;
 /** Does the source wire connected to this wire make a PIP? */
 private boolean isPIP;

The WireConnection objects can define the connecting wire by using the integer enumeration value of the
wire name and a relative offset of the tile differences between the two wires (again, relative to save space and
increase reuse of the object). The WireConnection object also defines if the connection made is a
programmable connection (or PIP). When the row and column tile offsets are both 0, the connection exists
within the same tile and is likely a PIP.

To query the connections that can be made from INT_X1Y1 E2BEG4, here is some sample Java code to
illustrate how this is done:

// Load the appropriate Device and WireEnumerator
// (this is done automatically when loading XDL designs)
String partName = "xc4vfx12ff668";
Device dev = FileTools.loadDevice(partName);
WireEnumerator we = FileTools.loadWireEnumerator(partName);
// Here we pick a wire name
String wireName = "E2BEG4";
// Here we get the integer enum value for that wire name
int wire = we.getWireEnum(wireName);
String tileName = "INT_X1Y1";
Tile tile = dev.getTile(tileName);
WireConnection[] wireConnections = tile.getWireConnections(wire);
for(WireConnection w : wireConnections){
 System.out.println(tileName + " " +
 wireName + " connects to " +
 dev.getTile(tile.getRow()-w.getRowOffset(),
 tile.getColumn()-w.getColumnOffset()) + " " +
 we.getWireName(w.getWire()) + " (is" +
 (w.isPIP()? " " : " not ") +
 "a PIP connection)");
}
Console Output:

INT_X1Y1 E2BEG4 connects to INT_X1Y1 BOUNCE1 (is a PIP connection)

 Page | 39

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

INT_X1Y1 E2BEG4 connects to INT_X1Y1 BOUNCE2 (is a PIP connection)
INT_X1Y1 E2BEG4 connects to INT_X3Y1 E2END4 (is not a PIP connection)
INT_X1Y1 E2BEG4 connects to INT_X2Y1 E2MID4 (is not a PIP connection)

Routes in XDL are specified only with PIPs. Non-PIP connections (that is E2BEG4 to E2MID4, etc.) are not
declared in an XDL Net since the connection is implied. The two wire segments are part of the same piece of
metal on the FPGA. Thus, when declaring the routing resources used in a Net (the list of PIPs), these
connections are not explicitly listed. However, the PIP connections are, for example:

net "main_00/i_ila/i_dt0/1/data_dly1_20" ,
 outpin "main_00/i_ila/i_dt0/1/data_dly1_20" XQ ,
 inpin "main_00/i_ila/i_yes_d/u_ila/idata_70" BY ,
 pip CLB_X16Y48 XQ_PINWIRE2 -> SECONDARY_LOGIC_OUTS2_INT ,
 pip CLB_X18Y48 BYP_INT_B4_INT -> BY_PINWIRE0 ,
 pip INT_X16Y48 SECONDARY_LOGIC_OUTS2 -> OMUX7 ,
 pip INT_X17Y48 OMUX_E7 -> E2BEG4 ,
 pip INT_X18Y48 E2MID4 -> BYP_INT_B4 ,
 ;

The listing of PIPs in XDL is arbitrary, that is, they do not always follow from one connection to the next.

Basic Routing
RapidSmith has included an AbstractRouter class that allows for a common template so that routers can
be constructed quite easily. However, the user should not feel restricted in using this template as it may not
meet everyone’s needs and/or requirements.

An example BasicRouter class has also been provided to illustrate how a router can be constructed easily.
The BasicRouter class is ~400 lines of code. It is very simple and does not do any routing conflict
resolution (it is a basic Maze router implementation) and it will commonly be unable to route certain
connections in a design. Also, because the timing information for Xilinx parts is not publicly available, the
router must use other means to optimize the router rather than delay. However, it does perform re-entrant
routing, that is, it will attempt to route all nets that don’t have any PIPs while keeping the original routed nets
intact. If a net is impartially routed or improperly routed before given to the router, it does not resolve these
problems. The behavior and mechanics of this router are described in the remainder of this section.

Router Structure
The basic router provided in RapidSmith is based on a simple maze router algorithm. It does not allow routing
resources to be used more than once, and thus, routing resources come on a first-come-first-served basis. This
makes for a very simple implementation but does not resolve routing conflicts when they arise. The router
chooses a route by iterating through a growing set of nodes, represented by the Node class. A node is a unique
tile and wire combination to uniquely identify any routing wire available in the FPGA. Nodes are given a cost
based on their Manhattan distance from the sink of the current connection to be routed and then placed in a
priority queue. Those nodes with the smallest cost propagate to the bottom of the queue.

The least cost node of the queue is iteratively removed. With each removal, the node is examined for its
expanding connections and those new potential nodes are also placed on the queue. Each time a node is
removed, it is tested to see if it is the sink, if it is, the method traverses the path it has found and returns,
otherwise it continues to expand more connections of the current node.

The router uses the following basic algorithm:

 Page | 40

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

1. The central routing method, routeDesign() prepares the nets in the design for routing.
2. For each net in the design, routeDesign() will call routeNet().

a. routeNet() prepares each inpin or sink in the net for routing.
i. If this is the first inpin of the net, it will only supply the outpin or source of the net as a

starting point to the router.
ii. If this is the second or later inpin routed in the net, all intermediate points along those

routes are added as starting points.
b. For each inpin, routeNet() will call routeConnection().

i. routeConnection() initializes the priority queue of potential source nodes.
ii. routeConnection() calls the main routing method route() for each connection

to be routed.
1. The route() method iterates over the nodes in the priority queue, expanding

their connections and adding new ones to the queue and putting more connections
on the queue. The process continues until the sink is found.

3. After a net has been routed, the routing resources used will be marked as used to avoid reusing the
resources twice.

Routing Static Sources (VCC/GND)
One major preparation step in routing a full design is preparing where the static sources will be supplied from.
The basic primitive in all Xilinx FPGAs to supply VCC and GND signals to a design is the TIEOFF. The
TIEOFF accompanies every switch matrix and has several connections to all sink connections to its neighboring
logic tile (CLB, BRAM, DSP, etc.). It has 3 pins, HARD0 or GND, KEEP1 (VCC) and HARD1 (VCC). By
default, without any configuration, it seems that pins will default to KEEP1. Some pins, however, require a
HARD1 when specified to be driven with VCC.

The StaticSourceHandler class takes care of partitioning the various nets and sinks into their respective
tiles and instancing the TIEOFF automatically. It also will instance SLICEs when necessary. It also “reserves”
certain routing resources for certain nets that could potentially introduce routing conflicts later. These reserved
nodes are released just before the net is routed in the basic router.

Routing Clocks
When routing clocks, it is quite important that they get routed to the appropriate clock tree routing resources.
The best current method to determine this is based on the WireDirection (the type CLK was placed in
WireDirection because there are certain CLK wires that also fell into certain WireType categories). The
cost function for determining node position in the priority queue take into account clock wires and significantly
reduces their cost when routing clock nets.

Internal Pin Names and External Pin Names
In RapidSmith, there is the notion of each pin on an instance having an internal name and an external name.
This can easily get confusing, especially where this can be a weak point for XDLRC report files which lack
some of this information for some primitive types.

Internal pin names occur commonly in two places (although, they do occur in other places):

1. In XDL nets which contain “outpin” and “inpin” statements
2. In XDLRC primitive_def declarations in the primitive_defs section of an XDLRC report.

 Page | 41

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

First, let’s talk about pins found in nets in XDL designs. In XDL, pins in a net are declared first with either the
keyword “outpin” (to designate the source) or “inpin” (to designate a sink). Following the keyword is the name
of the instance the pin belongs to. To illustrate this, let’s look at an example:

In the example above, there are two pins, a source and a sink. The source is found on the instance “fred” and
the sink is found on the instance “barney.” The source pin on “fred” is pin “Y” and the sink pin is “RST” on
“barney.”

However, a problem arises when trying to use pin names in routing. For example if the pin name Y were used
to specify routing to the instance it would be ambiguous because the Y pin belongs to a slice. Since PIPs
declare routing resources at the tile level, the pin Y would have to be unique to the tile, however, there are
actually multiple slices in a CLB tile making the reference “Y” ambiguous. To eliminate the ambiguity, Xilinx
developed what we call an internal pin name and external pin name. The internal pin name (Y and RST in the
example) is used when talking about a pin on an instance, however, to route to/from that pin the external name
is used. In the PIP list of the example net above, the first PIP contains the external name “Y_PINWIRE1” of
pin Y on “fred” and the second PIP contains that external name “DCM_ADV_RST” of the pin RST. In the
Virtex 4 architecture, there are 4 slices in each CLB, so the Y pin on each slice is named Y_PINWIRE0,
Y_PINWIRE1, Y_PINWIRE2 and Y_PINWIRE3 respectively. The mapping of an internal pin name to an
external pin name is found in the primitive_site declaration in an XDLRC report.

Let’s look at an example of an XDLRC primitive_site:

 (primitive_site SLICE_X1Y126 SLICEL internal 27
 (pinwire BX input BX_PINWIRE1)
 (pinwire BY input BY_PINWIRE1)
 (pinwire CE input CE_PINWIRE1)
 (pinwire CIN input CIN1)
 (pinwire CLK input CLK_PINWIRE1)
 (pinwire SR input SR_PINWIRE1)
 (pinwire F1 input F1_PINWIRE1)
 (pinwire F2 input F2_PINWIRE1)
 (pinwire F3 input F3_PINWIRE1)
 (pinwire F4 input F4_PINWIRE1)
 (pinwire G1 input G1_PINWIRE1)
 (pinwire G2 input G2_PINWIRE1)
 (pinwire G3 input G3_PINWIRE1)
 (pinwire G4 input G4_PINWIRE1)
 (pinwire FXINA input FXINA1)
 (pinwire FXINB input FXINB1)
 (pinwire F5 output F51)
 (pinwire FX output FX1)
 (pinwire X output X_PINWIRE1)
 (pinwire XB output XB_PINWIRE1)
 (pinwire XQ output XQ_PINWIRE1)
 (pinwire Y output Y_PINWIRE1)

net "netName" ,
 outpin "fred" Y ,
 inpin "barney" RST ,
 pip CLB_X14Y4 Y_PINWIRE1 -> BEST_LOGIC_OUTS5_INT ,
 pip DCM_BOT_X15Y4 SR_B0_INT3 -> DCM_ADV_RST ,
 pip INT_X14Y4 BEST_LOGIC_OUTS5 -> OMUX8 ,
 pip INT_X15Y5 OMUX_EN8 -> N2BEG0 ,
 pip INT_X15Y7 N2END0 -> SR_B0 ,
 ;

 Page | 42

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

 (pinwire YB output YB_PINWIRE1)
 (pinwire YQ output YQ_PINWIRE1)
 (pinwire COUT output COUT1)
 (pinwire YMUX output YMUX_PINWIRE1)
 (pinwire XMUX output XMUX_PINWIRE1)
)

XDLRC report files show a mapping of internal pin name to external pin name on each line which starts with
“(pinwire”. The pattern is:

 “(pinwire <internal pin name> <direction of pin> <external pin name>)”

This is very straight forward and is the second common location to find internal and external pin names in
XDL/XDLRC. In RapidSmith, the mapping between internal and external pin names can be made using the
following methods:

In the PrimitiveSite class:
 /**
 * Gets the external wire enumeration of the name of the wire corresponding to the
 * internal wire name.
 * @param internalName The internal wire name in the primitive.
 * @return The corresponding external wire enum (Integer) name of the internal wire
 * name.
 */
 public Integer getExternalPinName(String internalName);

In the Device class:
 /**
 * Gets the external wire enumeration on the instance pin.
 * @param pin The pin to get the external name from.
 * @return The wire enumeration of the internal pin on the instance primitive of
 * pin.
 */
 public Integer getPrimitiveExternalPin(Pin pin);

There is a problem, however, with some primitive types and getting mappings for their internal pin names to
external pin names. Sometimes, a primitive type does not have a native primitive site in any device in Xilinx
FPGA family. Therefore, the primitive must be placed on a compatible primitive site of a different type. For
example, an IOB primitive instance does not have a native site on most families. However, it is fully
compatible with IOBM or IOBS sites.

In certain instances, the internal pin names differ on the primitive with no native sites to the sites on which it
can be placed. The biggest example of this is in the Virtex 5 which has 9 different primitive types which all use
the same primitive site type (RAMBFIFO36). Because the RAMBFIFO36 site is declared several times in the
Virtex 5 devices, all of the internal-to-external pin mappings are available. However, 8 other sets of mappings
are not present. The lack of mappings makes routing designs which contain these primitives impossible. The
solution to this problem is to apply a patch with the proper mappings. A complete patch will be included with
RapidSmith in a future release.

 Page | 43

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

BITSTREAMS IN RAPIDSMITH
In RapidSmith, bitstreams can be parsed, manipulated, and exported for Virtex 4, Virtex 5 and Virtex 6 Xilinx
FPGA families. Because of the proprietary nature of Xilinx bitstreams, RapidSmith provides only documented
functionality when working with bitstreams. This functionality comes mainly from the documents distributed
by Xilinx in the form of user guides, whitepapers and application notes. Any discussion relating to bitstreams
in this document (unless explicitly clarified) refers to Virtex 4/5/6 bitstreams.

Bitstreams are stored in 32-bit words for ease of interpretation. The best reference for much of the details and
specifics of the bitstream can be found in the Configuration User’s Guide for each of the FPGA family
architectures. Here are links to the references:

• Xilinx UG071 – Virtex 4 FPGA Configuration User Guide
• Xilinx UG191 – Virtex 5 FPGA Configuration User Guide
• Xilinx UG360 – Virtex 6 FPGA Configuration User Guide

Although each guide contains valuable information for each FPGA architecture family, the Virtex 5 guide is the
most comprehensive and complete. It will provide the most insights and most of those insights can be applied
to the other architecture families.

RapidSmith has a bitstream parser which is capable of importing bitstream files into the bitstream data
structure. This data structure can also export bitstreams after modification to a bitstream file and/or an MCS
PROM file. For more details on the bitstream import and export capabilities see the
bitstreamTools.bitstream.BitstreamParser class and
bitstreamTools.bitstream.Bitstream class.

Bitstream Composition
In order to effectively use the bitstream capabilities provided in RapidSmith a preliminary understanding of
how Xilinx bitstream are organized is necessary. In RapidSmith, Xilinx bitstream files are composed of three
main elements as encapsulated by the bitstreamTools.bitstream.Bitstream class:

1. A bitstream header (bitstreamTools.bitstream.BitstreamHeader)
2. Dummy and Synchronization data (bitstreamTools.bitstream.DummySyncData)
3. A list of bitstream packets (bitstreamTools.bitstream.PacketList)

Figure 13 below provides an illustrative diagram of how all of the components of a bitstream file correlate with
the bitstreamTools.bitstream package in RapidSmith.

 Page | 44

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Figure 13 - This diagram represents how RapidSmith encapsulates bitstream files using the bitstream package.

The entire package bitstreamTools.bitstream.* is dedicated to the representation of bitstream files.
A bitstream file contains everything the configuration logic needs to setup the FPGA in preparation for
configuration as well as containing all of the configuration data itself.

Bitstream Header
The first set of data that appears in a bitstream file is the bitstream header. The bitstream header contains
information about the bitstream such as:

• The name of the NCD file the bitstream from which it was created
• The FPGA part name the bitstream targets
• The date the bitstream was created
• The time the bitstream was created

All bitstream header information is actually ignored by the configuration logic and theoretically could be very
large if a custom header was created. The bitstreamTools.bitstream.BitstreamHeader class is
designed to parse headers and allow users to read and write the header and also export it to an XML format.

Bitstream Header
(part name, date, time

created, …)

Dummy &
Synchronization

Data
(dummy word, sync word, …)

Packet List

bitstream.BitstreamHeader

bitstream.DummySyncData

bitstream.PacketList

Packet

Packet Header

Packet Data

bitstream.Packet

List<Integer>

int
Header
(Packet)

Type
[31:29]

OpCode

[28:27]

Register
Address

[26:13]

Reserved

[12:11]

Word
Count

[10:0]

bitstream.RegisterType

bitstream.PacketOpCode

bitstream.PacketType

Packet

Packet

Packet

Packet

Packet

Packet

…

Packet

BITSTREAM FILE
LEGEND

Names in Courier type are RapidSmith or Java Classes, the
complete bitstream package name is:

edu.byu.ece.rapidSmith.bitstreamTools.bitstream

 Page | 45

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Dummy and Synchronization Data
In order for the configuration process to begin, the configuration controller must lock onto the sequence of
words it is receiving from JTAG. It does this by waiting for a dummy word followed by a sync word
(0xFFFFFFFF and 0xAA995566) in order to lock onto the incoming data. The
bitstreamTools.bitstream.DummySyncData class is responsible for representing all dummy and
synchronization data that is found immediately after the header but before the packet list as this data can be
different from family to family.

Packet List
Packets are like configuration controller instructions that read or write a particular register. Once the
configuration process has been synchronized, the configuration controller will begin to read the packets in the
bitstream and execute their read or register write. Much of the details concerning packets can be found in the
configuration user guides referenced at the beginning of this section, however, Figure 13 shows how a packet
header is described in RapidSmith.

One of the reliability mechanisms in bitstreams are CRC checks. Bitstreams include special packets which
contain a CRC checksum based on the previous data in the bitstream file. This CRC ensures that the bitstream
arrives correctly when parsed by the configuration logic. RapidSmith has facilities to create and/or update CRC
packets when data changes. See the bitstreamTools.bitstream.CRC and
bitstreamTools.bitstream.PacketListCRC classes for more details.

There are two types of packets, Type I and Type II as indicated in the most significant bits of the packet header.
Type I packets are used for small amounts of data being written to configuration registers. Type II packets
always must follow a Type I packet and are able to carry a much bigger payload such as the entire configuration
data for an FPGA. Generally, a normal bitstream will only have one Type II packet which is the packet
carrying all of the configuration data for the FPGA. The configuration data can be sent in Type I packets, but a
Type II packet is used for efficiency in programming and speed. This configuration data has its own addressing
scheme and thus, the bitstream tools in RapidSmith accommodate this with a few other packages.

Bitstream Configuration Data
FPGA
The large Type II packet present in most bitstreams will likely contain all of the configuration data for the
FPGA fabric. The bitstream tools in RapidSmith are able to emulate the configuring (at an abstract bitstream
level) of the FPGA fabric in the bitstreamTools.configuration.FPGA class. In essence, the
bitstream in the bitstreamTools.bitstream.Bitstream class “configures” or gets applied to the
FPGA class.

Xilinx Configuration Specification
Because each FPGA is a little different and can vary among FPGA family architectures, RapidSmith has special
classes that contain part specific information automatically generated from debug bitstreams to enable the FPGA
class to emulate any device in the Virtex 4/5/6 families. In order to accommodate any device in the Virtex 4/5/6
families, the FPGA class requires what is called a XilinxConfigurationSpecification which defines certain
bitstream attributes about a particular device. The XilinxConfigurationSpecification is a public Java interface
declared in
bitstreamTools.configurationSpecification.XilinxConfigurationSpecification.
This interface is implemented by an abstract class

 Page | 46

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

(bitstreamTools.configurationSpecification.AbstractConfigurationSpecificati
on) and further extended by other classes, where each class contains information for each family. Specific parts
are represented in PartLibrary classes which extend the family specific
{V4,V5,V6}ConfigurationSpecifications.

Much of the headache of trying to understand the previous paragraph is avoided by simply doing the following
to initialize an FPGA instance:

String partName = "xc4vfx12ff668-10";
XilinxConfigurationSpecification spec =
DeviceLookup.lookupPartV4V5V6(partName);
FPGA virtex4fx12 = new FPGA(spec);

Frame Address Register
An organized mechanism is used to access various parts of the configuration data in an FPGA. This mechanism
is called the frame address register or FAR for short, it is represented in RapidSmith as the
bitstreamTools.configuration.FrameAddressRegister class. The FAR is one of the
configuration registers found in the configuration logic. Like all configuration registers, the FAR is 32 bits and
although the bits are laid out in a different order for different architectures, they all contain the same fields:

• Top/Bottom: A bit indicating if the referenced bits are in the top half rows or bottom half rows of the
device.

• Block Type: The type of block (configuration block) that is being referenced by the register. The block
types vary depending on the architecture—See configuration guides for more details.

• Row Address: References a row of frames. Row addresses start at 0 in the middle of the chip and
increment towards the top or bottom.

• Column Address: Selects a major column (such as CLBs) to reference. Column addresses start at 0 at
the left side of the chip and increment towards the right.

• Minor Address: Selects a frame inside of a configuration block. Different configuration blocks have
different sizes of frames.

The bit field assignments for Virtex 4/5/6 are shown in the table below:

FAR	Address	Fields	 Virtex	4	 Virtex	5	 Virtex	6	
Block	Type	 [21:19]	 [23:21]	 [23:21]	

Top	/	Bottom	Bit	 22	 20	 20	
Row	Address	 [18:14]	 [19:15]	 [19:15]	

Column	Address	 [13:6]	 [14:7]	 [14:7]	
Minor	Address	 [5:0]	 [6:0]	 [6:0]	

Frame
A frame is the smallest addressable configuration data in a Xilinx FPGA. In Virtex 4 and Virtex 5
architectures, a frame is 1312 bits or 41 32-bit words. In Virtex 6, a frame is 2592 bits or 81 32-bit words. The
frame is addressed using the FAR and populating the appropriate fields. Each frame will have a unique address
which corresponds to a different value in the FAR or what is called a frame address.

A frame in RapidSmith is represented by the bitstreamTools.configuration.Frame class. A frame
has a unique frame address (represented by a 32-bit int) and contains 41/81 words of data which are stored in

 Page | 47

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

the bitstreamTools.configuration.FrameData class. Frame data is organized fairly similarly
among architectures. As an example of how frame data is organized, consider the figure below taken from the
Xilinx UG191(v3.9.1) - Virtex 5 Configuration Guide (Figure 6-9, p. 130):

Figure 14 - Layout of the data in a Virtex 5 configuration frame.

As can be seen from Figure 14, the center configuration word contains configuration bits the control the
horizontal clock wires and contains ECC bits for the frame data. The words before the center word configure
the top half of a configuration block (or in the case of Virtex 5, the top 10 CLBs) and the words after the center
word configure the bottom half of the configuration block.

Configuration Block
Frames are grouped into groups called configuration blocks. Although there is no explicit class to represent a
configuration block in RapidSmith, it is heavily used concept. A configuration block can be defined as the
grouping of frames that have the same top/bottom-bit, row address and column address in a frame’s address
(also as indicated in the frame address register). Configuration blocks come in different types, and each type
has a subtype. Block types and subtypes are represented in the
bitstreamTools.configurationSpecification.BlockType and

 Page | 48

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

bitstreamTools.configurationSpecification.BlockSubType classes. Block types and
subtypes are specified in the architecture’s corresponding configuration specification. To give a quick overview
of some block types and their frame sizes, consider the table below:

Configuration	Block	
Type/SubType	

Virtex	4	 Virtex	5	 Virtex	6	

CLB	Block	 22	frames	 36	frames	 36	frames	
IO	Block	 30	frames	 54	frames	 44	frames	
DSP	Block	 21	frames	 28	frames	 28	frames	
CLK	Block	 3	frames	 4	frames	 38	frames	

MGT/GTX	Block	 20	frames	 32	frames	 30	frames	
BRAM	Interconnect	

Block	
20	frames	 30	frames	 28	frames	

BRAM	Content	Block	 64	frames	 128	frames	 128	frames	
Overhead	 2	frames	 2	frames	 2	frames	

BRAM	Overhead	 2	frames	 2	frames	 2	frames	
Figure 15 - Frame counts for different block types and block subtypes in Virtex 4/5/6 architectures.

 Page | 49

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

APPENDIX
Here is just a grouping of useful topics that may not fit in the rest of this document.

Appendix A: Modifying LUT Content
LUTs (look up tables) found in Xilinx slices can be easily modified using RapidSmith. LUT content is stored in
an attribute in an instance of a SLICEL or SLICEM or whatever type of SLICE the device has. Often the name
of the LUT is a single letter such as F or G as in the Virtex 4 family. Virtex 5 FPGAs have 4 LUTs in a slice
and are called “{A, B, C, D}{5, 6}LUT” which have the capability to act as a 5 input or 6 input LUT.

LUT Equation Syntax
Xilinx uses the following syntax for operators in a LUT equations string:

Operator Operator Meaning
* Logical AND
+ Logical OR
@ Logical XOR
~ Unary NOT

The parenthesis characters are also used to denote precedence in equation. Valid equation values are A1, A2,
A3 and A4 for 4-input LUTs with an additional A5 for 5-input LUTs and A6 for 6-input LUTs. Some examples
of LUT equations are:

LUT Equation Equation Meaning
A1 Passes through the signal A1
A1*A2 A 2-input AND gate using A1 and A2
~A4 Inverts the signal on A4
(A4+(A1+(A2+A3))) A multi-level OR of 4 inputs

XDL LUT Equation Syntax
An instance is configured by zero or more attributes in a list where an attribute has the pattern

<Physical Name>:<Optional Logical Name>:<Value>.

The physical name of a LUT has been mentioned at the beginning of this subsection as being F or G for Virtex
4 parts and “{A, B, C, D}{5, 6}LUT” for Virtex 5 parts. The optional logical name is generally chosen by the
synthesis tools or whatever name propagated through to Xilinx NGDBuild and Map when the signal was
converted. It is only for reference back to the user’s original design and should correspond with the output of
the LUT. The value has the following syntax:

#LUT:D=<equation>

This syntax can also be found in the XDLRC primitive_defs. If we put this altogether with our examples above
we would get:

F:mySignal0:#LUT:D=A1
G:mySignal1:#LUT:D=A1*A2

 Page | 50

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

F:mySignal2:#LUT:D=~A4
G:mySignal3:#LUT:D=(A4+(A1+(A2+A3)))

Notice that the value also contains the colon (‘:’). RapidSmith defines the separation of the three components
of an attribute as the first and second colons, any colons found after the second colon is part of the attribute
value.

It is also of some value to recognize that the router can re-arrange LUT inputs to make routing easier and this
can change equation to some extent.

Appendix B: Hard Macros in XDL and RapidSmith
A hard macro is a collection of primitive instances and nets that have been placed and possibly routed. The
XDL construct that represents a hard macro is the “module”. A hard macro file only has a single module and no
other nets, instances or module instances present in the file. The design name is "__XILINX_NMC_MACRO"
which is a static variable in the Design class:

 public static final String hardMacroDesignName = "__XILINX_NMC_MACRO";

Xilinx NMC files
The NCD file format is not used for hard macros; instead, Xilinx uses the NMC format which is fairly similar.
NMC files can be converted to and from XDL using the same xdl executable. For example:

xdl –ncd2ndl myHardMacro.nmc [optional: myHardMacro.xdl]
xdl –xdl2ncd myHardMacro.xdl myHardMacro.nmc

The user must specify the output file name for NMC files when converting from XDL to NMC, otherwise it will
output a file with the same name but NCD extension and the Xilinx tools won’t read it properly. You may also
need to apply the –force option if there is an error.

Xilinx Hard Macros
There are several hidden restrictions and conventions that must be adhered to in order to create a valid Xilinx
hard macro. Here is a list of the known quirks to creating Xilinx-compatible hard macros:

• Any nets that are designated as GND or VCC are invalid (this will cause xdl to run in an infinite loop)
• The TIEOFF primitive found in INT tiles (switch matrix tiles) cannot be used in hard macros (this will

cause a problem later on with map and/or par)
• Conventional “XDL_DUMMY” SLICEs which contain a “_NO_USER_LOGIC” attribute will not work

with the Xilinx tools.
• Nets can only have 1 (one) hard macro port assigned to its pin list.

RapidSmith Hard Macro Generator
RapidSmith provides a generic hard macro generator that will take a placed and routed NCD design file (or
XDL equivalent) and replace IOBs with module ports among other transformations to make it a valid and legal
hard macro. The hard macro generator provided is the same as used in the published paper, “Using Hard
Macros to Reduce FPGA Compilation Time”, C. Lavin, et al., FPL’2010. This class is found in the util
package and can be run from the command line:

java edu.byu.ece.rapidSmith.util.HardMacroGenerator <input.xdl |
input.ncd> <output file type: xdl | nmc> [optional: original_toplevel.vhd]

 Page | 51

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

The hard macro generator has to remove TIEOFFs (which supply GND and VCC) because they are not legal
primitives in hard macros. Therefore, the hard macro generator creates input ports accordingly. It also renames
ports according to primitive instance names of the IOBs and will attempt to name them as they were found in
the original HDL. However, it only can guess, and for a more complete naming, the top level VHDL file can
optionally be provided as a parameter to help the generator get the port names correctly. Unfortunately, the
generator cannot parse Verilog.

Appendix C: Xilinx Family Names and Part Names
The part and family naming conventions used in RapidSmith largely follow those used in the Xilinx tool
partgen. RapidSmith includes an enum type called FamilyType for all known family architectures in the
util package.

Xilinx Part Names in RapidSmith
RapidSmith uses the part name pattern as produced by the Xilinx partgen tool. These part names start with ‘X’
for Xilinx and are then often followed by a ‘C’ for commercial parts, ‘A’ for automotive parts, ‘Q’ for military
grade parts, and ‘QR’ for space grade parts. The part names also include the package, however, because
RapidSmith does not have any timing information, the speed grade is optional. Some examples are shown
below:

Examples of valid part names
in RapidSmith

Examples of invalid part
names in RapidSmith

• XC4VFX12FF668
• XC5LX110TFF1136-2
• XCV50BG256

• Virtex 4 LX30
• XC5VSX35T-2FF665C
• XC5VLX20T

RapidSmith contains methods in util.RunXilinxTools to automatically run partgen and parse its
output to obtain part names of installed devices. The installer uses these methods in order to determine which
parts are valid on the system. The user can also refer to the final table in the Appendix entry on Memory and
Performance of RapidSmith for a long list of part names. Other manipulation and conversion function for part
names are found in the util.PartNameTools class.

Xilinx Family Names in RapidSmith
By using the FamilyType enum, it makes writing code easier when trying to figure out what family the
current design is targeting. The util.PartNameTools has several methods to help identify a family type
from a part name and also identify sub family names. With the most recent Xilinx tools (ISE 11.1 and above)
do not support legacy devices (Spartan 2, Spartan 2E, Virtex, Virtex E, Virtex 2 and Virtex 2 Pro families) and
must use ISE 10.1.03 or older to create XDLRC reports and import/export XDL design. PartNameTools
contains a method to determine if a given family type is a legacy type:

 /**
 * This method determines which family types require the older version
 * of the Xilinx tools (10.1.03 or older).
 * @param familyType The family type to check.
 * @return True if this part requires older tools (10.1.03) or older, false
 * otherwise.
 */
 public static boolean isFamilyTypeLegacy(FamilyType familyType);

 Page | 52

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Appendix D: XDLRC Compatible Families
RapidSmith depends on Xilinx XDLRC files for device descriptions. Xilinx offers several different families
which in actuality use the same XDLRC information. Therefore, there is a set of base (commercial grade)
families that are compatible with other families as well. The follow is a table showing these compatibilities:

Base	Families	(Formal	Name)	 Base	Families	(partgen	Name)	 XDLRC	Compatible	Families	
Spartan2 spartan2 -
Spartan2E spartan2e aspartan2e
Spartan3 spartan3 aspartan3
Spartan3A and Spartan3AN spartan3a aspartan3a
Spartan-3A DSP spartan3adsp aspartan3adsp
Spartan3E spartan3e aspartan3e

Spartan6 spartan6 spartan6l, aspartan6, qspartan6,
qspartan6l

Virtex virtex qvirtex, qrvirtex
Virtex2 virtex2 qvirtex2, qrvirtex2
Virtex2P virtex2p qvirtex2p
Virtex4 virtex4 qrvirtex4, qvirtex4
Virtex5 virtex5 qvirtex5, qrvirtex5
Virtex6 virtex6 virtex6l
VirtexE virtexe qvirtexe

Only device files are generated for the base families. Therefore, when loading designs or RapidSmith files, it’s
always best to use the base family name. One way to ensure this is to use the following method:

 /**
 * This method will take a familyType and return the base familyType
 * architecture. For example, the XDLRC RapidSmith uses for Automotive
 * Spartan 6, Low Power Spartan 6 and Military Grade Spartan 6 all have
 * the same base architecture: Spartan 6. This method determines the
 * base architecture based on the familyType.
 * @param type The given family type.
 * @return The base family type architecture.
 */
 public static FamilyType getBaseTypeFromFamilyType(FamilyType type);

Appendix E: Memory and Performance of RapidSmith
This section contains a dump from the shell script generated in the tests.TestFileLoading class in
RapidSmith. It determines the files size, Java heap usage in MB and load time from disk for the following 3
types of files. This script was run on a Windows 7 Enterprise 64-bit OS with an Intel Core i7 860 running at
2.8GHz. The test machine had 8 GB of DDR3 memory, a conventional 1 TB SATA hard drive and was using
version 0.5.0 of RapidSmith and the 32-bit Oracle JVM version 1.6.0_22.

Running RapidSmith in 64-bit Java will work exactly the same as in 32-bit mode; however its performance will
be slightly slower and use more memory.

 Page | 53

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

Wire Enumerator Files
Family	Name	 File	Size	 Java	Heap	Usage	 Load	Time	From	Disk	
SPARTAN2	 17KB	 0.6MB	 0.030s	
SPARTAN2E	 19KB	 0.6MB	 0.030s	
SPARTAN3	 15KB	 0.5MB	 0.030s	
SPARTAN3A	 25KB	 0.9MB	 0.032s	
SPARTAN3ADSP	 33KB	 1.2MB	 0.035s	
SPARTAN3E	 26KB	 0.9MB	 0.033s	
SPARTAN6	 168KB	 6.6MB	 0.081s	
VIRTEX	 17KB	 0.6MB	 0.030s	
VIRTEX2	 21KB	 0.7MB	 0.033s	
VIRTEX2P	 90KB	 3.1MB	 0.055s	
VIRTEX4	 233KB	 8.1MB	 0.109s	
VIRTEX5	 264KB	 9.9MB	 0.128s	
VIRTEX6	 171KB	 6.3MB	 0.098s	

Primitive Definitions Files
Family	Name	 File	Size	 Java	Heap	Usage	 Load	Time	From	Disk	
SPARTAN2	 8KB	 0.1MB	 0.085s	
SPARTAN2E	 9KB	 0.1MB	 0.084s	
SPARTAN3	 17KB	 0.1MB	 0.082s	
SPARTAN3A	 23KB	 0.1MB	 0.097s	
SPARTAN3ADSP	 63KB	 0.1MB	 0.110s	
SPARTAN3E	 21KB	 0.1MB	 0.085s	
SPARTAN6	 117KB	 0.1MB	 0.114s	
VIRTEX	 8KB	 0.1MB	 0.075s	
VIRTEX2	 18KB	 0.1MB	 0.079s	
VIRTEX2P	 88KB	 0.1MB	 0.108s	
VIRTEX4	 179KB	 0.1MB	 0.144s	
VIRTEX5	 322KB	 0.1MB	 0.191s	
VIRTEX6	 191KB	 0.1MB	 0.149s	

Device Files
Family	Name	 Part	Name	 File	Size	 Java	Heap	Size	 Load	Time	from	Disk	
KINTEX7	 xc7k160tfbg484	 1093KB	 40MB	 0.430s	
KINTEX7	 xc7k160tfbg676	 1093KB	 40MB	 0.424s	
KINTEX7	 xc7k160tffg676	 1093KB	 40MB	 0.442s	
KINTEX7	 xc7k30tfbg484	 619KB	 17MB	 0.221s	
KINTEX7	 xc7k30tsbg324	 619KB	 17MB	 0.209s	
KINTEX7	 xc7k325tfbg676	 1424KB	 58MB	 0.628s	
KINTEX7	 xc7k325tfbg900	 1424KB	 58MB	 0.628s	
KINTEX7	 xc7k325tffg676	 1424KB	 58MB	 0.629s	
KINTEX7	 xc7k325tffg900	 1424KB	 58MB	 0.665s	

 Page | 54

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

KINTEX7	 xc7k410tfbg676	 1704KB	 72MB	 0.774s	
KINTEX7	 xc7k410tfbg900	 1705KB	 72MB	 0.777s	
KINTEX7	 xc7k410tffg676	 1704KB	 72MB	 0.807s	
KINTEX7	 xc7k410tffg900	 1705KB	 72MB	 0.797s	
KINTEX7	 xc7k70tfbg484	 778KB	 25MB	 0.345s	
KINTEX7	 xc7k70tfbg676	 778KB	 25MB	 0.358s	
KINTEX7	 xc7k70tsbg324	 778KB	 25MB	 0.324s	
SPARTAN2	 xc2s100fg256	 134KB	 3MB	 0.082s	
SPARTAN2	 xc2s100fg456	 134KB	 3MB	 0.082s	
SPARTAN2	 xc2s100pq208	 134KB	 3MB	 0.083s	
SPARTAN2	 xc2s100tq144	 134KB	 3MB	 0.091s	
SPARTAN2	 xc2s150fg256	 150KB	 5MB	 0.096s	
SPARTAN2	 xc2s150fg456	 150KB	 5MB	 0.101s	
SPARTAN2	 xc2s150pq208	 150KB	 5MB	 0.096s	
SPARTAN2	 xc2s15cs144	 84KB	 1MB	 0.054s	
SPARTAN2	 xc2s15tq144	 84KB	 1MB	 0.052s	
SPARTAN2	 xc2s15vq100	 84KB	 1MB	 0.057s	
SPARTAN2	 xc2s200fg256	 179KB	 7MB	 0.115s	
SPARTAN2	 xc2s200fg456	 179KB	 7MB	 0.119s	
SPARTAN2	 xc2s200pq208	 179KB	 7MB	 0.116s	
SPARTAN2	 xc2s30cs144	 103KB	 1MB	 0.062s	
SPARTAN2	 xc2s30pq208	 103KB	 1MB	 0.059s	
SPARTAN2	 xc2s30tq144	 103KB	 1MB	 0.060s	
SPARTAN2	 xc2s30vq100	 103KB	 1MB	 0.060s	
SPARTAN2	 xc2s50fg256	 117KB	 2MB	 0.078s	
SPARTAN2	 xc2s50pq208	 117KB	 2MB	 0.078s	
SPARTAN2	 xc2s50tq144	 118KB	 2MB	 0.082s	
SPARTAN2E	 xc2s100efg456	 137KB	 3MB	 0.102s	
SPARTAN2E	 xc2s100eft256	 137KB	 3MB	 0.095s	
SPARTAN2E	 xc2s100epq208	 137KB	 3MB	 0.095s	
SPARTAN2E	 xc2s100etq144	 137KB	 3MB	 0.086s	
SPARTAN2E	 xc2s150efg456	 154KB	 5MB	 0.095s	
SPARTAN2E	 xc2s150eft256	 154KB	 5MB	 0.097s	
SPARTAN2E	 xc2s150epq208	 154KB	 5MB	 0.101s	
SPARTAN2E	 xc2s200efg456	 189KB	 7MB	 0.119s	
SPARTAN2E	 xc2s200eft256	 189KB	 7MB	 0.118s	
SPARTAN2E	 xc2s200epq208	 189KB	 7MB	 0.121s	
SPARTAN2E	 xc2s300efg456	 233KB	 8MB	 0.129s	
SPARTAN2E	 xc2s300eft256	 233KB	 8MB	 0.129s	
SPARTAN2E	 xc2s300epq208	 233KB	 8MB	 0.128s	
SPARTAN2E	 xc2s400efg456	 326KB	 13MB	 0.182s	
SPARTAN2E	 xc2s400efg676	 326KB	 13MB	 0.179s	
SPARTAN2E	 xc2s400eft256	 326KB	 13MB	 0.180s	
SPARTAN2E	 xc2s50eft256	 121KB	 2MB	 0.076s	

 Page | 55

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

SPARTAN2E	 xc2s50epq208	 121KB	 2MB	 0.076s	
SPARTAN2E	 xc2s50etq144	 121KB	 2MB	 0.076s	
SPARTAN2E	 xc2s600efg456	 390KB	 19MB	 0.235s	
SPARTAN2E	 xc2s600efg676	 389KB	 19MB	 0.259s	
SPARTAN3	 xc3s1000fg320	 357KB	 19MB	 0.199s	
SPARTAN3	 xc3s1000fg456	 357KB	 19MB	 0.187s	
SPARTAN3	 xc3s1000fg676	 357KB	 19MB	 0.186s	
SPARTAN3	 xc3s1000ft256	 357KB	 19MB	 0.186s	
SPARTAN3	 xc3s1000lfg320	 357KB	 19MB	 0.185s	
SPARTAN3	 xc3s1000lfg456	 357KB	 19MB	 0.185s	
SPARTAN3	 xc3s1000lft256	 357KB	 19MB	 0.185s	
SPARTAN3	 xc3s1500fg320	 538KB	 31MB	 0.270s	
SPARTAN3	 xc3s1500fg456	 538KB	 31MB	 0.271s	
SPARTAN3	 xc3s1500fg676	 538KB	 31MB	 0.286s	
SPARTAN3	 xc3s1500lfg320	 538KB	 31MB	 0.284s	
SPARTAN3	 xc3s1500lfg456	 538KB	 31MB	 0.260s	
SPARTAN3	 xc3s1500lfg676	 538KB	 31MB	 0.260s	
SPARTAN3	 xc3s2000fg456	 739KB	 48MB	 0.350s	
SPARTAN3	 xc3s2000fg676	 739KB	 48MB	 0.354s	
SPARTAN3	 xc3s2000fg900	 739KB	 48MB	 0.359s	
SPARTAN3	 xc3s200ft256	 106KB	 5MB	 0.081s	
SPARTAN3	 xc3s200pq208	 106KB	 5MB	 0.083s	
SPARTAN3	 xc3s200tq144	 106KB	 5MB	 0.086s	
SPARTAN3	 xc3s200vq100	 106KB	 5MB	 0.084s	
SPARTAN3	 xc3s4000fg1156	 912KB	 66MB	 0.508s	
SPARTAN3	 xc3s4000fg676	 912KB	 66MB	 0.513s	
SPARTAN3	 xc3s4000fg900	 912KB	 66MB	 0.518s	
SPARTAN3	 xc3s4000lfg900	 912KB	 66MB	 0.509s	
SPARTAN3	 xc3s400fg320	 203KB	 9MB	 0.145s	
SPARTAN3	 xc3s400fg456	 203KB	 9MB	 0.174s	
SPARTAN3	 xc3s400ft256	 203KB	 9MB	 0.203s	
SPARTAN3	 xc3s400pq208	 203KB	 9MB	 0.220s	
SPARTAN3	 xc3s400tq144	 203KB	 9MB	 0.190s	
SPARTAN3	 xc3s5000fg1156	 1184KB	 79MB	 0.707s	
SPARTAN3	 xc3s5000fg676	 1184KB	 79MB	 0.612s	
SPARTAN3	 xc3s5000fg900	 1184KB	 79MB	 0.611s	
SPARTAN3	 xc3s50cp132	 78KB	 2MB	 0.060s	
SPARTAN3	 xc3s50pq208	 78KB	 2MB	 0.060s	
SPARTAN3	 xc3s50tq144	 78KB	 2MB	 0.060s	
SPARTAN3	 xc3s50vq100	 78KB	 2MB	 0.061s	
SPARTAN3A	 xc3s1400afg484	 630KB	 28MB	 0.274s	
SPARTAN3A	 xc3s1400afg676	 630KB	 28MB	 0.284s	
SPARTAN3A	 xc3s1400aft256	 630KB	 28MB	 0.291s	
SPARTAN3A	 xc3s1400anfgg676	 630KB	 28MB	 0.271s	

 Page | 56

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

SPARTAN3A	 xc3s200afg320	 194KB	 6MB	 0.098s	
SPARTAN3A	 xc3s200aft256	 194KB	 6MB	 0.096s	
SPARTAN3A	 xc3s200anftg256	 194KB	 6MB	 0.096s	
SPARTAN3A	 xc3s200avq100	 194KB	 6MB	 0.097s	
SPARTAN3A	 xc3s400afg320	 309KB	 10MB	 0.121s	
SPARTAN3A	 xc3s400afg400	 309KB	 10MB	 0.120s	
SPARTAN3A	 xc3s400aft256	 309KB	 10MB	 0.119s	
SPARTAN3A	 xc3s400anfgg400	 309KB	 10MB	 0.121s	
SPARTAN3A	 xc3s50aft256	 114KB	 2MB	 0.070s	
SPARTAN3A	 xc3s50antqg144	 114KB	 2MB	 0.073s	
SPARTAN3A	 xc3s50atq144	 114KB	 2MB	 0.077s	
SPARTAN3A	 xc3s50avq100	 114KB	 2MB	 0.081s	
SPARTAN3A	 xc3s700afg400	 456KB	 16MB	 0.174s	
SPARTAN3A	 xc3s700afg484	 456KB	 16MB	 0.163s	
SPARTAN3A	 xc3s700aft256	 456KB	 16MB	 0.163s	
SPARTAN3A	 xc3s700anfgg484	 456KB	 16MB	 0.171s	
SPARTAN3ADSP	 xc3sd1800acs484	 1073KB	 45MB	 0.385s	
SPARTAN3ADSP	 xc3sd1800afg676	 1073KB	 45MB	 0.349s	
SPARTAN3ADSP	 xc3sd3400acs484	 1443KB	 65MB	 0.490s	
SPARTAN3ADSP	 xc3sd3400afg676	 1443KB	 65MB	 0.496s	
SPARTAN3E	 xc3s100ecp132	 152KB	 3MB	 0.075s	
SPARTAN3E	 xc3s100etq144	 152KB	 3MB	 0.075s	
SPARTAN3E	 xc3s100evq100	 152KB	 3MB	 0.075s	
SPARTAN3E	 xc3s1200efg320	 588KB	 22MB	 0.213s	
SPARTAN3E	 xc3s1200efg400	 588KB	 22MB	 0.220s	
SPARTAN3E	 xc3s1200eft256	 588KB	 22MB	 0.217s	
SPARTAN3E	 xc3s1600efg320	 794KB	 36MB	 0.299s	
SPARTAN3E	 xc3s1600efg400	 794KB	 36MB	 0.302s	
SPARTAN3E	 xc3s1600efg484	 794KB	 36MB	 0.300s	
SPARTAN3E	 xc3s250ecp132	 234KB	 7MB	 0.102s	
SPARTAN3E	 xc3s250eft256	 234KB	 7MB	 0.102s	
SPARTAN3E	 xc3s250epq208	 234KB	 7MB	 0.102s	
SPARTAN3E	 xc3s250etq144	 234KB	 7MB	 0.104s	
SPARTAN3E	 xc3s250evq100	 234KB	 7MB	 0.102s	
SPARTAN3E	 xc3s500ecp132	 376KB	 13MB	 0.159s	
SPARTAN3E	 xc3s500efg320	 376KB	 13MB	 0.161s	
SPARTAN3E	 xc3s500eft256	 376KB	 13MB	 0.162s	
SPARTAN3E	 xc3s500epq208	 376KB	 13MB	 0.155s	
SPARTAN3E	 xc3s500evq100	 376KB	 13MB	 0.151s	
SPARTAN6	 xc6slx100csg484	 530KB	 16MB	 0.221s	
SPARTAN6	 xc6slx100fgg484	 530KB	 16MB	 0.220s	
SPARTAN6	 xc6slx100fgg676	 530KB	 16MB	 0.221s	
SPARTAN6	 xc6slx100tcsg484	 620KB	 16MB	 0.222s	
SPARTAN6	 xc6slx100tfgg484	 620KB	 16MB	 0.222s	

 Page | 57

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

SPARTAN6	 xc6slx100tfgg676	 620KB	 16MB	 0.224s	
SPARTAN6	 xc6slx100tfgg900	 620KB	 16MB	 0.234s	
SPARTAN6	 xc6slx150csg484	 624KB	 19MB	 0.262s	
SPARTAN6	 xc6slx150fgg484	 624KB	 19MB	 0.249s	
SPARTAN6	 xc6slx150fgg676	 624KB	 19MB	 0.245s	
SPARTAN6	 xc6slx150fgg900	 624KB	 19MB	 0.247s	
SPARTAN6	 xc6slx150tcsg484	 713KB	 20MB	 0.244s	
SPARTAN6	 xc6slx150tfgg484	 713KB	 20MB	 0.245s	
SPARTAN6	 xc6slx150tfgg676	 713KB	 20MB	 0.244s	
SPARTAN6	 xc6slx150tfgg900	 713KB	 20MB	 0.251s	
SPARTAN6	 xc6slx16cpg196	 234KB	 5MB	 0.106s	
SPARTAN6	 xc6slx16csg225	 234KB	 5MB	 0.106s	
SPARTAN6	 xc6slx16csg324	 234KB	 5MB	 0.117s	
SPARTAN6	 xc6slx16ftg256	 234KB	 5MB	 0.100s	
SPARTAN6	 xc6slx25csg324	 307KB	 8MB	 0.124s	
SPARTAN6	 xc6slx25fgg484	 307KB	 8MB	 0.123s	
SPARTAN6	 xc6slx25ftg256	 307KB	 8MB	 0.125s	
SPARTAN6	 xc6slx25tcsg324	 362KB	 8MB	 0.143s	
SPARTAN6	 xc6slx25tfgg484	 362KB	 8MB	 0.148s	
SPARTAN6	 xc6slx45csg324	 359KB	 9MB	 0.151s	
SPARTAN6	 xc6slx45csg484	 359KB	 9MB	 0.151s	
SPARTAN6	 xc6slx45fgg484	 359KB	 9MB	 0.145s	
SPARTAN6	 xc6slx45fgg676	 359KB	 9MB	 0.143s	
SPARTAN6	 xc6slx45tcsg324	 421KB	 10MB	 0.146s	
SPARTAN6	 xc6slx45tcsg484	 421KB	 10MB	 0.144s	
SPARTAN6	 xc6slx45tfgg484	 421KB	 10MB	 0.144s	
SPARTAN6	 xc6slx4cpg196	 150KB	 3MB	 0.083s	
SPARTAN6	 xc6slx4csg225	 150KB	 3MB	 0.085s	
SPARTAN6	 xc6slx4tqg144	 150KB	 3MB	 0.082s	
SPARTAN6	 xc6slx75csg484	 468KB	 13MB	 0.192s	
SPARTAN6	 xc6slx75fgg484	 468KB	 13MB	 0.202s	
SPARTAN6	 xc6slx75fgg676	 468KB	 13MB	 0.209s	
SPARTAN6	 xc6slx75tcsg484	 555KB	 13MB	 0.218s	
SPARTAN6	 xc6slx75tfgg484	 555KB	 13MB	 0.202s	
SPARTAN6	 xc6slx75tfgg676	 555KB	 13MB	 0.201s	
SPARTAN6	 xc6slx9cpg196	 215KB	 4MB	 0.089s	
SPARTAN6	 xc6slx9csg225	 215KB	 4MB	 0.089s	
SPARTAN6	 xc6slx9csg324	 215KB	 4MB	 0.088s	
SPARTAN6	 xc6slx9ftg256	 215KB	 4MB	 0.089s	
SPARTAN6	 xc6slx9tqg144	 215KB	 4MB	 0.088s	
VIRTEX	 xcv1000bg560	 465KB	 31MB	 0.338s	
VIRTEX	 xcv1000fg680	 465KB	 31MB	 0.346s	
VIRTEX	 xcv100bg256	 132KB	 3MB	 0.087s	
VIRTEX	 xcv100cs144	 132KB	 3MB	 0.088s	

 Page | 58

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

VIRTEX	 xcv100fg256	 132KB	 3MB	 0.092s	
VIRTEX	 xcv100pq240	 132KB	 3MB	 0.083s	
VIRTEX	 xcv100tq144	 132KB	 3MB	 0.082s	
VIRTEX	 xcv150bg256	 148KB	 5MB	 0.095s	
VIRTEX	 xcv150bg352	 148KB	 5MB	 0.103s	
VIRTEX	 xcv150fg256	 148KB	 5MB	 0.102s	
VIRTEX	 xcv150fg456	 148KB	 5MB	 0.103s	
VIRTEX	 xcv150pq240	 148KB	 5MB	 0.099s	
VIRTEX	 xcv200bg256	 176KB	 7MB	 0.110s	
VIRTEX	 xcv200bg352	 177KB	 7MB	 0.109s	
VIRTEX	 xcv200fg256	 176KB	 7MB	 0.114s	
VIRTEX	 xcv200fg456	 177KB	 7MB	 0.116s	
VIRTEX	 xcv200pq240	 176KB	 7MB	 0.117s	
VIRTEX	 xcv300bg352	 216KB	 8MB	 0.131s	
VIRTEX	 xcv300bg432	 216KB	 8MB	 0.125s	
VIRTEX	 xcv300fg456	 216KB	 8MB	 0.123s	
VIRTEX	 xcv300pq240	 216KB	 8MB	 0.125s	
VIRTEX	 xcv400bg432	 274KB	 13MB	 0.173s	
VIRTEX	 xcv400bg560	 274KB	 13MB	 0.183s	
VIRTEX	 xcv400fg676	 274KB	 13MB	 0.183s	
VIRTEX	 xcv400hq240	 274KB	 13MB	 0.181s	
VIRTEX	 xcv50bg256	 116KB	 2MB	 0.077s	
VIRTEX	 xcv50cs144	 116KB	 2MB	 0.075s	
VIRTEX	 xcv50fg256	 116KB	 2MB	 0.075s	
VIRTEX	 xcv50pq240	 116KB	 2MB	 0.076s	
VIRTEX	 xcv50tq144	 116KB	 2MB	 0.076s	
VIRTEX	 xcv600bg432	 330KB	 18MB	 0.229s	
VIRTEX	 xcv600bg560	 330KB	 18MB	 0.228s	
VIRTEX	 xcv600fg676	 330KB	 18MB	 0.228s	
VIRTEX	 xcv600fg680	 330KB	 18MB	 0.229s	
VIRTEX	 xcv600hq240	 330KB	 18MB	 0.243s	
VIRTEX	 xcv800bg432	 399KB	 24MB	 0.322s	
VIRTEX	 xcv800bg560	 399KB	 24MB	 0.308s	
VIRTEX	 xcv800fg676	 399KB	 24MB	 0.317s	
VIRTEX	 xcv800fg680	 399KB	 24MB	 0.314s	
VIRTEX	 xcv800hq240	 399KB	 24MB	 0.311s	
VIRTEX2	 xc2v1000bg575	 378KB	 15MB	 0.168s	
VIRTEX2	 xc2v1000ff896	 378KB	 15MB	 0.168s	
VIRTEX2	 xc2v1000fg256	 378KB	 15MB	 0.170s	
VIRTEX2	 xc2v1000fg456	 378KB	 15MB	 0.186s	
VIRTEX2	 xc2v1500bg575	 496KB	 21MB	 0.230s	
VIRTEX2	 xc2v1500ff896	 496KB	 21MB	 0.223s	
VIRTEX2	 xc2v1500fg676	 496KB	 21MB	 0.218s	
VIRTEX2	 xc2v2000bf957	 599KB	 28MB	 0.288s	

 Page | 59

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

VIRTEX2	 xc2v2000bg575	 599KB	 28MB	 0.287s	
VIRTEX2	 xc2v2000ff896	 599KB	 28MB	 0.287s	
VIRTEX2	 xc2v2000fg676	 599KB	 28MB	 0.288s	
VIRTEX2	 xc2v250cs144	 171KB	 6MB	 0.099s	
VIRTEX2	 xc2v250fg256	 171KB	 6MB	 0.104s	
VIRTEX2	 xc2v250fg456	 171KB	 6MB	 0.106s	
VIRTEX2	 xc2v3000bf957	 759KB	 38MB	 0.410s	
VIRTEX2	 xc2v3000bg728	 759KB	 38MB	 0.374s	
VIRTEX2	 xc2v3000ff1152	 759KB	 38MB	 0.374s	
VIRTEX2	 xc2v3000fg676	 759KB	 38MB	 0.377s	
VIRTEX2	 xc2v4000bf957	 1083KB	 60MB	 0.548s	
VIRTEX2	 xc2v4000ff1152	 1083KB	 60MB	 0.593s	
VIRTEX2	 xc2v4000ff1517	 1083KB	 60MB	 0.565s	
VIRTEX2	 xc2v40cs144	 96KB	 1MB	 0.057s	
VIRTEX2	 xc2v40fg256	 96KB	 1MB	 0.060s	
VIRTEX2	 xc2v500fg256	 290KB	 10MB	 0.139s	
VIRTEX2	 xc2v500fg456	 290KB	 10MB	 0.132s	
VIRTEX2	 xc2v6000bf957	 1381KB	 86MB	 0.750s	
VIRTEX2	 xc2v6000ff1152	 1381KB	 86MB	 0.790s	
VIRTEX2	 xc2v6000ff1517	 1381KB	 86MB	 0.772s	
VIRTEX2	 xc2v8000ff1152	 2205KB	 117MB	 1.070s	
VIRTEX2	 xc2v8000ff1517	 2205KB	 117MB	 1.024s	
VIRTEX2	 xc2v80cs144	 113KB	 2MB	 0.070s	
VIRTEX2	 xc2v80fg256	 113KB	 2MB	 0.070s	
VIRTEX2P	 xc2vp100ff1696	 2520KB	 125MB	 0.987s	
VIRTEX2P	 xc2vp100ff1704	 2515KB	 125MB	 1.007s	
VIRTEX2P	 xc2vp20ff1152	 869KB	 29MB	 0.292s	
VIRTEX2P	 xc2vp20ff896	 869KB	 29MB	 0.281s	
VIRTEX2P	 xc2vp20fg676	 868KB	 29MB	 0.277s	
VIRTEX2P	 xc2vp2ff672	 214KB	 5MB	 0.090s	
VIRTEX2P	 xc2vp2fg256	 214KB	 5MB	 0.096s	
VIRTEX2P	 xc2vp2fg456	 214KB	 5MB	 0.097s	
VIRTEX2P	 xc2vp30ff1152	 1105KB	 41MB	 0.380s	
VIRTEX2P	 xc2vp30ff896	 1105KB	 41MB	 0.365s	
VIRTEX2P	 xc2vp30fg676	 1105KB	 41MB	 0.399s	
VIRTEX2P	 xc2vp40ff1148	 1407KB	 57MB	 0.530s	
VIRTEX2P	 xc2vp40ff1152	 1407KB	 57MB	 0.502s	
VIRTEX2P	 xc2vp40fg676	 1407KB	 57MB	 0.517s	
VIRTEX2P	 xc2vp4ff672	 450KB	 11MB	 0.139s	
VIRTEX2P	 xc2vp4fg256	 450KB	 11MB	 0.128s	
VIRTEX2P	 xc2vp4fg456	 450KB	 11MB	 0.127s	
VIRTEX2P	 xc2vp50ff1148	 1601KB	 70MB	 0.610s	
VIRTEX2P	 xc2vp50ff1152	 1596KB	 70MB	 0.564s	
VIRTEX2P	 xc2vp50ff1517	 1595KB	 70MB	 0.565s	

 Page | 60

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

VIRTEX2P	 xc2vp70ff1517	 2052KB	 96MB	 0.769s	
VIRTEX2P	 xc2vp70ff1704	 2052KB	 96MB	 0.713s	
VIRTEX2P	 xc2vp7ff672	 610KB	 17MB	 0.173s	
VIRTEX2P	 xc2vp7ff896	 610KB	 17MB	 0.174s	
VIRTEX2P	 xc2vp7fg456	 610KB	 17MB	 0.174s	
VIRTEX2P	 xc2vpx20ff896	 892KB	 30MB	 0.280s	
VIRTEX2P	 xc2vpx70ff1704	 2117KB	 96MB	 0.788s	
VIRTEX4	 xc4vfx100ff1152	 1357KB	 57MB	 0.550s	
VIRTEX4	 xc4vfx100ff1517	 1357KB	 57MB	 0.579s	
VIRTEX4	 xc4vfx12ff668	 598KB	 18MB	 0.179s	
VIRTEX4	 xc4vfx12sf363	 598KB	 18MB	 0.179s	
VIRTEX4	 xc4vfx140ff1517	 1546KB	 70MB	 0.616s	
VIRTEX4	 xc4vfx20ff672	 924KB	 27MB	 0.297s	
VIRTEX4	 xc4vfx40ff1152	 1159KB	 41MB	 0.366s	
VIRTEX4	 xc4vfx40ff672	 1158KB	 41MB	 0.367s	
VIRTEX4	 xc4vfx60ff1152	 1206KB	 46MB	 0.386s	
VIRTEX4	 xc4vfx60ff672	 1206KB	 46MB	 0.385s	
VIRTEX4	 xc4vlx100ff1148	 701KB	 37MB	 0.384s	
VIRTEX4	 xc4vlx100ff1513	 701KB	 37MB	 0.405s	
VIRTEX4	 xc4vlx15ff668	 231KB	 16MB	 0.151s	
VIRTEX4	 xc4vlx15ff676	 231KB	 16MB	 0.152s	
VIRTEX4	 xc4vlx15sf363	 231KB	 16MB	 0.153s	
VIRTEX4	 xc4vlx160ff1148	 875KB	 55MB	 0.540s	
VIRTEX4	 xc4vlx160ff1513	 875KB	 55MB	 0.538s	
VIRTEX4	 xc4vlx200ff1513	 1010KB	 61MB	 0.602s	
VIRTEX4	 xc4vlx25ff668	 287KB	 18MB	 0.177s	
VIRTEX4	 xc4vlx25ff676	 287KB	 18MB	 0.170s	
VIRTEX4	 xc4vlx25sf363	 287KB	 18MB	 0.167s	
VIRTEX4	 xc4vlx40ff1148	 348KB	 21MB	 0.226s	
VIRTEX4	 xc4vlx40ff668	 349KB	 21MB	 0.222s	
VIRTEX4	 xc4vlx60ff1148	 464KB	 30MB	 0.292s	
VIRTEX4	 xc4vlx60ff668	 464KB	 30MB	 0.287s	
VIRTEX4	 xc4vlx80ff1148	 596KB	 35MB	 0.362s	
VIRTEX4	 xc4vsx25ff668	 373KB	 27MB	 0.275s	
VIRTEX4	 xc4vsx35ff668	 441KB	 28MB	 0.287s	
VIRTEX4	 xc4vsx55ff1148	 539KB	 34MB	 0.299s	
VIRTEX5	 xc5vfx100tff1136	 1014KB	 45MB	 0.448s	
VIRTEX5	 xc5vfx100tff1738	 1014KB	 45MB	 0.440s	
VIRTEX5	 xc5vfx130tff1738	 1058KB	 47MB	 0.522s	
VIRTEX5	 xc5vfx200tff1738	 1227KB	 60MB	 0.585s	
VIRTEX5	 xc5vfx30tff665	 781KB	 25MB	 0.306s	
VIRTEX5	 xc5vfx70tff1136	 899KB	 34MB	 0.350s	
VIRTEX5	 xc5vfx70tff665	 898KB	 34MB	 0.355s	
VIRTEX5	 xc5vlx110ff1153	 589KB	 32MB	 0.329s	

 Page | 61

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

VIRTEX5	 xc5vlx110ff1760	 589KB	 32MB	 0.322s	
VIRTEX5	 xc5vlx110ff676	 588KB	 32MB	 0.321s	
VIRTEX5	 xc5vlx110tff1136	 761KB	 34MB	 0.341s	
VIRTEX5	 xc5vlx110tff1738	 761KB	 34MB	 0.340s	
VIRTEX5	 xc5vlx155ff1153	 716KB	 44MB	 0.423s	
VIRTEX5	 xc5vlx155ff1760	 716KB	 44MB	 0.436s	
VIRTEX5	 xc5vlx155tff1136	 893KB	 46MB	 0.427s	
VIRTEX5	 xc5vlx155tff1738	 893KB	 46MB	 0.426s	
VIRTEX5	 xc5vlx20tff323	 497KB	 17MB	 0.192s	
VIRTEX5	 xc5vlx220ff1760	 862KB	 62MB	 0.566s	
VIRTEX5	 xc5vlx220tff1738	 1039KB	 64MB	 0.619s	
VIRTEX5	 xc5vlx30ff324	 380KB	 18MB	 0.198s	
VIRTEX5	 xc5vlx30ff676	 381KB	 18MB	 0.183s	
VIRTEX5	 xc5vlx30tff323	 558KB	 20MB	 0.222s	
VIRTEX5	 xc5vlx30tff665	 558KB	 20MB	 0.221s	
VIRTEX5	 xc5vlx330ff1760	 1069KB	 69MB	 0.622s	
VIRTEX5	 xc5vlx330tff1738	 1250KB	 72MB	 0.632s	
VIRTEX5	 xc5vlx50ff1153	 417KB	 19MB	 0.231s	
VIRTEX5	 xc5vlx50ff324	 417KB	 19MB	 0.229s	
VIRTEX5	 xc5vlx50ff676	 417KB	 19MB	 0.217s	
VIRTEX5	 xc5vlx50tff1136	 587KB	 21MB	 0.235s	
VIRTEX5	 xc5vlx50tff665	 586KB	 21MB	 0.237s	
VIRTEX5	 xc5vlx85ff1153	 535KB	 30MB	 0.305s	
VIRTEX5	 xc5vlx85ff676	 534KB	 30MB	 0.303s	
VIRTEX5	 xc5vlx85tff1136	 706KB	 32MB	 0.321s	
VIRTEX5	 xc5vsx240tff1738	 1135KB	 61MB	 0.630s	
VIRTEX5	 xc5vsx35tff665	 596KB	 25MB	 0.257s	
VIRTEX5	 xc5vsx50tff1136	 630KB	 26MB	 0.300s	
VIRTEX5	 xc5vsx50tff665	 630KB	 26MB	 0.302s	
VIRTEX5	 xc5vsx95tff1136	 754KB	 36MB	 0.382s	
VIRTEX5	 xc5vtx150tff1156	 870KB	 40MB	 0.402s	
VIRTEX5	 xc5vtx150tff1759	 871KB	 40MB	 0.402s	
VIRTEX5	 xc5vtx240tff1759	 1111KB	 56MB	 0.620s	
VIRTEX6	 xc6vcx130tff1156	 715KB	 25MB	 0.333s	
VIRTEX6	 xc6vcx130tff484	 715KB	 25MB	 0.336s	
VIRTEX6	 xc6vcx130tff784	 715KB	 25MB	 0.332s	
VIRTEX6	 xc6vcx195tff1156	 853KB	 32MB	 0.418s	
VIRTEX6	 xc6vcx195tff784	 853KB	 32MB	 0.420s	
VIRTEX6	 xc6vcx240tff1156	 937KB	 35MB	 0.460s	
VIRTEX6	 xc6vcx240tff784	 937KB	 35MB	 0.447s	
VIRTEX6	 xc6vcx75tff484	 583KB	 20MB	 0.252s	
VIRTEX6	 xc6vcx75tff784	 584KB	 20MB	 0.251s	
VIRTEX6	 xc6vhx250tff1154	 973KB	 36MB	 0.444s	
VIRTEX6	 xc6vhx255tff1155	 1029KB	 38MB	 0.463s	

 Page | 62

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

VIRTEX6	 xc6vhx255tff1923	 1029KB	 38MB	 0.496s	
VIRTEX6	 xc6vhx380tff1154	 1285KB	 47MB	 0.575s	
VIRTEX6	 xc6vhx380tff1155	 1286KB	 47MB	 0.563s	
VIRTEX6	 xc6vhx380tff1923	 1288KB	 47MB	 0.606s	
VIRTEX6	 xc6vhx380tff1924	 1287KB	 47MB	 0.583s	
VIRTEX6	 xc6vhx565tff1923	 1661KB	 66MB	 0.843s	
VIRTEX6	 xc6vhx565tff1924	 1660KB	 66MB	 0.874s	
VIRTEX6	 xc6vlx130tff1156	 709KB	 25MB	 0.361s	
VIRTEX6	 xc6vlx130tff484	 709KB	 25MB	 0.376s	
VIRTEX6	 xc6vlx130tff784	 709KB	 25MB	 0.366s	
VIRTEX6	 xc6vlx195tff1156	 849KB	 32MB	 0.433s	
VIRTEX6	 xc6vlx195tff784	 848KB	 32MB	 0.449s	
VIRTEX6	 xc6vlx240tff1156	 934KB	 35MB	 0.510s	
VIRTEX6	 xc6vlx240tff1759	 935KB	 35MB	 0.502s	
VIRTEX6	 xc6vlx240tff784	 934KB	 35MB	 0.459s	
VIRTEX6	 xc6vlx365tff1156	 1186KB	 46MB	 0.599s	
VIRTEX6	 xc6vlx365tff1759	 1187KB	 46MB	 0.599s	
VIRTEX6	 xc6vlx550tff1759	 1550KB	 62MB	 0.836s	
VIRTEX6	 xc6vlx550tff1760	 1551KB	 62MB	 0.814s	
VIRTEX6	 xc6vlx75tff484	 582KB	 20MB	 0.281s	
VIRTEX6	 xc6vlx75tff784	 582KB	 20MB	 0.283s	
VIRTEX6	 xc6vlx760ff1760	 1758KB	 77MB	 1.068s	
VIRTEX6	 xc6vsx315tff1156	 1157KB	 45MB	 0.562s	
VIRTEX6	 xc6vsx315tff1759	 1157KB	 45MB	 0.587s	
VIRTEX6	 xc6vsx475tff1156	 1505KB	 61MB	 0.814s	
VIRTEX6	 xc6vsx475tff1759	 1506KB	 61MB	 0.824s	
VIRTEX7	 xc7v1500tffg1761	 4985KB	 263MB	 2.653s	
VIRTEX7	 xc7v1500tfhg1157	 4985KB	 263MB	 2.709s	
VIRTEX7	 xc7v2000tffg1925	 5956KB	 301MB	 3.339s	
VIRTEX7	 xc7v2000tfhg1761	 5956KB	 301MB	 3.365s	
VIRTEX7	 xc7v285tffg1157	 1332KB	 53MB	 0.625s	
VIRTEX7	 xc7v285tffg1761	 1332KB	 53MB	 0.632s	
VIRTEX7	 xc7v285tffg484	 1331KB	 53MB	 0.625s	
VIRTEX7	 xc7v285tffg784	 1331KB	 53MB	 0.648s	
VIRTEX7	 xc7v450tffg1157	 1697KB	 71MB	 0.830s	
VIRTEX7	 xc7v450tffg1761	 1697KB	 71MB	 0.847s	
VIRTEX7	 xc7v450tffg784	 1697KB	 71MB	 0.838s	
VIRTEX7	 xc7v585tffg1157	 1996KB	 83MB	 1.004s	
VIRTEX7	 xc7v585tffg1761	 1996KB	 83MB	 0.968s	
VIRTEX7	 xc7v855tffg1157	 2634KB	 115MB	 1.408s	
VIRTEX7	 xc7v855tffg1761	 2634KB	 115MB	 1.461s	
VIRTEX7	 xc7vx485tffg1157	 2137KB	 93MB	 1.322s	
VIRTEX7	 xc7vx485tffg1158	 2136KB	 93MB	 1.083s	
VIRTEX7	 xc7vx485tffg1761	 2137KB	 93MB	 1.144s	

 Page | 63

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

VIRTEX7	 xc7vx485tffg1929	 2136KB	 93MB	 1.124s	
VIRTEXE	 xcv1000ebg560	 623KB	 31MB	 0.389s	
VIRTEXE	 xcv1000efg1156	 623KB	 31MB	 0.388s	
VIRTEXE	 xcv1000efg680	 623KB	 31MB	 0.402s	
VIRTEXE	 xcv1000efg860	 623KB	 31MB	 0.393s	
VIRTEXE	 xcv1000efg900	 623KB	 31MB	 0.391s	
VIRTEXE	 xcv1000ehq240	 623KB	 31MB	 0.385s	
VIRTEXE	 xcv100ebg352	 163KB	 4MB	 0.093s	
VIRTEXE	 xcv100ecs144	 163KB	 4MB	 0.092s	
VIRTEXE	 xcv100efg256	 163KB	 4MB	 0.089s	
VIRTEXE	 xcv100epq240	 163KB	 4MB	 0.087s	
VIRTEXE	 xcv1600ebg560	 778KB	 39MB	 0.490s	
VIRTEXE	 xcv1600efg1156	 778KB	 39MB	 0.489s	
VIRTEXE	 xcv1600efg680	 778KB	 39MB	 0.485s	
VIRTEXE	 xcv1600efg860	 778KB	 39MB	 0.475s	
VIRTEXE	 xcv1600efg900	 778KB	 39MB	 0.495s	
VIRTEXE	 xcv2000ebg560	 860KB	 49MB	 0.640s	
VIRTEXE	 xcv2000efg1156	 860KB	 49MB	 0.637s	
VIRTEXE	 xcv2000efg680	 860KB	 49MB	 0.630s	
VIRTEXE	 xcv2000efg860	 860KB	 49MB	 0.649s	
VIRTEXE	 xcv200ebg352	 237KB	 7MB	 0.117s	
VIRTEXE	 xcv200ecs144	 237KB	 7MB	 0.118s	
VIRTEXE	 xcv200efg256	 237KB	 7MB	 0.117s	
VIRTEXE	 xcv200efg456	 237KB	 7MB	 0.117s	
VIRTEXE	 xcv200epq240	 237KB	 7MB	 0.117s	
VIRTEXE	 xcv2600efg1156	 1073KB	 64MB	 0.774s	
VIRTEXE	 xcv300ebg352	 281KB	 9MB	 0.137s	
VIRTEXE	 xcv300ebg432	 281KB	 9MB	 0.141s	
VIRTEXE	 xcv300efg256	 281KB	 9MB	 0.138s	
VIRTEXE	 xcv300efg456	 281KB	 9MB	 0.138s	
VIRTEXE	 xcv300epq240	 281KB	 9MB	 0.140s	
VIRTEXE	 xcv3200efg1156	 1304KB	 81MB	 0.949s	
VIRTEXE	 xcv400ebg432	 335KB	 13MB	 0.192s	
VIRTEXE	 xcv400ebg560	 335KB	 13MB	 0.202s	
VIRTEXE	 xcv400efg676	 335KB	 13MB	 0.189s	
VIRTEXE	 xcv400epq240	 335KB	 13MB	 0.200s	
VIRTEXE	 xcv405ebg560	 388KB	 14MB	 0.202s	
VIRTEXE	 xcv405efg676	 388KB	 14MB	 0.203s	
VIRTEXE	 xcv50ecs144	 152KB	 2MB	 0.079s	
VIRTEXE	 xcv50efg256	 152KB	 2MB	 0.078s	
VIRTEXE	 xcv50epq240	 152KB	 2MB	 0.079s	
VIRTEXE	 xcv600ebg432	 413KB	 19MB	 0.258s	
VIRTEXE	 xcv600ebg560	 413KB	 19MB	 0.245s	
VIRTEXE	 xcv600efg676	 413KB	 19MB	 0.258s	

 Page | 64

Copyright © 2010-2013 Brigham Young University 5/31/2018 4:04 PM

VIRTEXE	 xcv600efg680	 413KB	 19MB	 0.258s	
VIRTEXE	 xcv600efg900	 413KB	 19MB	 0.259s	
VIRTEXE	 xcv600ehq240	 413KB	 19MB	 0.246s	
VIRTEXE	 xcv812ebg560	 634KB	 26MB	 0.349s	
VIRTEXE	 xcv812efg900	 634KB	 26MB	 0.344s	

