
Rapid Prototyping Tools for FPGA Designs:
RapidSmith

Christopher Lavin 1, Marc Padilla, Philip Lundrigan, Brent Nelson 2, Brad Hutchings 3

NSF Center for High-Performance Reconfigurable Computing (CHREC)
Dept. of Electrical and Computer Engineering

Brigham Young University
Provo, UT, 84602, USA

1 chrislavin@byu.edu, 2 brent_nelson@byu.edu, 3 brad_hutchings@byu.edu

(Demonstration Paper)

Abstract—Designer productivity for FPGA design is signif-
icantly limited by the time-consuming nature of the FPGA
compilation process (synthesis, map, placement, and routing).
However, experimentation on alternative CAD tools for this
purpose for Xilinx devices has been somewhat limited. This paper
describes the development and distribution of RapidSmith, a
software library to facilitate the manipulation of XDL designs
and upon which a complete CAD system can be based. The
demonstration portion of this paper will show prototypes of
representative CAD tools which can be easily built on top of
the RapidSmith system.

I. INTRODUCTION

It is well-known that FPGA compilation times are many
times slower than the rapid compile times of software systems.
Further, faster FPGA compilation times would directly trans-
late into improved productivity for designers because hardware
engineers would then be able to complete more design and
debug turns per day. Unfortunately, FPGA implementation
times are not getting much faster, largely because devices
keep getting bigger with every generation. In an FPGA design
flow, the target hardware is also often available for design
verification use during much of the development process.
However, it often goes unused because there is no fast method
to leverage it for verification during the design process. Thus,
what is needed is a rapid mechanism for mapping a design onto
an existing FPGA platform to perform rapid design and debug
cycles, providing a more interactive development environment
for FPGAs.

Some work has been done in efforts to obtain reusability
using hard FPGA circuit cores to obtain faster FPGA compile
times. Horta and Lockwood [1] demonstrated the creation of
bitstream-based relocatable cores. Similar efforts were made in
[2] where bitstream hard cores were used in a network on chip
to provide accelerated logic emulation and prototyping. Un-
fortunately, using bitstream hard cores has restrictions in that
they must reside between configuration boundaries and require
matching bus macro interfaces to be present both in the core as
well as in the existing FPGA configuration. Similar work by

This work was supported by the I/UCRC Program of the National Science
Foundation under Grant No. 0801876.

Tessier [3] shows use of pre-placed macroblocks to accelerate
place and route by 2.6× over commercial tools. However, the
macroblocks did not include any routing information.

There are two main challenges associated with trying to
create a module-based FPGA design flow. First, there must
be a fast and simple way to create modules that contain as
much relative placement and routing information as possible to
provide reasonable speedup. The second challenge is that there
exists no real framework for commercial FPGAs that would
allow such a design flow to be built upon. To accurately report
credible speedup and fast build times, we feel it necessary
to perform such experiments on actual FPGAs. This work
intends to overcome these two challenges by proposing a new
hard macro-based design flow that, like software would create
and use pre-compiled modules (or “hard macros”) from a
library that could be rapidly assembled, placed and routed for
a rapid implementation. We also describe and demonstrate a
new open source software framework to make such a design
flow possible on Xilinx FPGAs. This framework is called
RapidSmith.

In the remainder of this paper we first describe our proposed
hard macro-based design flow and also a series of experiments
to investigate the feasibility of the hard macro-based system.
In the process of describing this we show the need for XDL-
based design tools to support the creation of a new design flow.
Finally, we describe such an XDL design tools framework
called RapidSmith and outline the demonstrations which will
be shown at the conference.

II. HARD MACRO-BASED DESIGN: HMFlow

In order to accelerate the Xilinx FPGA design flow, we
propose using hard macros as the basic design element for
all designs. That is, designs are constructed by assembling
together pre-placed and pre-routed hard macro blocks. We call
this new FPGA design flow HMFlow.

One of the obvious benefits of using hard macros in a design
flow is that there is no need to run synthesis, mapping, or
packing when the final design is assembled. The removal of
these three steps of the design flow represent a significant
fraction of the overall runtime. For example, in a typical EDK



MicroBlaze design, these three steps can take more than 75%
of the total implementation time [4].

An additional benefit of using hard macros as a method for
faster design builds is that hard macros are relatively-placed
and routed. Thus, only the hard macro needs to be placed
instead of all of its individual components. This ultimately
reduces the placement problem size significantly as a conven-
tional design may have thousands of primitive instances to
place, whereas a hard macro-based design may only have a
few dozen hard macros to be placed. Furthermore, hard macros
contain internal routing. Since the FPGA configuration rout-
ing fabric is generally homogeneous, pre-routed hard macros
should be able to be placed nearly anywhere on the device.
This also has the potential to significantly reduce the total
number of routes to be routed in a design.

III. INITIAL HARD MACRO EXPERIMENTS

In order to understand how well such a hard macro-based
tool flow is currently supported by the Xilinx tools, we ran a
series of experiments which were previously reported in [4].

.vhd,
.v

XST
NGD
Build

MAP PAR .ncd

Conventional Xilinx Flow

XDL
–ncd2xdl

.xdl HMG .xdl XDL
–xdl2ncd

.nmc

Fig. 1. Hard Macro Creation Flow

To create a set of hard macros for use in our experiments, we
developed a Hard Macro Generator tool (HMG) and associated
flow. Specific hard macro generation programs have been
created before as in [5] and [6]. However, to our knowledge
a tool to create general hard macros from arbitrary RTL has
not been created before. All of our circuit manipulations were
performed in XDL (XDL is a human-readable format equiva-
lent to the more widely used NCD format) and was built on
the RapidSmith framework detailed in Section IV. This flow
leveraged the first four steps of the conventional Xilinx design
flow as shown in Figure 1. Using the conventional Xilinx
tool flow, we created a complete, placed and routed FPGA
design which contained just the circuitry for the hard macro
we wanted to create. The result was an XDL representation of
the hard macro which was then converted to the Xilinx NMC
format (the Xilinx hard macro counterpart format to NCD).

We then created structural VHDL which instanced these
hard macros and then ran the Xilinx tool flow on this VHDL
from synthesis through place and route. Since the design was
an interconnected set of black boxes in the VHDL there was no
real synthesis performed nor was there any mapping or pack-
ing done. In all, a number of such tests were completed with
varying results. To summarize the results: (1) for some tests the
design successfully placed and routed, but the resulting tool

chain time was significantly longer than an equivalent process
starting from a standard HDL-based design, (2) for others no
valid placement for the hard macros in the design could be
found and the placement phase failed, and (3) for other tests,
placement would complete successfully but the router would
fail with an error message that it could not route all the nets in
the design. These results suggest that, in spite of the intuitive
advantages that a hard macro-based design flow would seem
to offer, Xilinx PAR does not work well with such a flow.
The results further suggest that placement was the problem—
either it failed to place the designs, or it seemed to create an
un-routable placement.

Our second set of experiments was designed to bypass the
Xilinx placement step to understand the router’s handling of
hard macros. To do so, the original VHDL-based structural
design was processed as before but only up to mapping and
packing. The result was an unplaced NCD file. The hard
macros were then placed by hand using a custom created XDL
hard macro placer tool. The resulting placed design was then
passed to the Xilinx router (PAR) for completion.

The first design tested was a multiplier tree containing 15
identical instances of a 20 × 20 pipelined multiplier macro,
organized as a binary tree of multipliers. The second design
was a collection of five different cores: CORDIC, AES decryp-
tor, Twofish (a symmetric key block cipher), FM Receiver, and
Hilbert Analytic Filter. All cores were placed in the design and
connected together to form a data-path with inputs and outputs
connected to external IO pins. The results of these tests showed
that the resulting circuits were implemented 3.1× faster than a
conventional VHDL-based Xilinx flow. The circuits produced
were between 6% and 50% larger but had clock rates within
25% of the baseline designs. In all, this provided reasonable
evidence that a speedup is possible for a hard macro-based
flow. See [4] for a more complete description of the results.

IV. RAPIDSMITH OVERVIEW

Based on the promising results derived from the experiments
described in the previous section, we began to construct such a
hard macro-based design flow. However, in order to do so, we
found no adequate open research tool to build upon to utilize
the XDL interface. There certainly have been several research
projects using XDL such as [7], [8] and [9], but the source
code associated with these projects is not publicly available.
The implementation of our design flow required an efficient
XDL manipulation tool that would facilitate a fast hard macro-
based design flow and also allow for rapid development.

Since no such tool is available for XDL, we have developed
our own framework and tools which we call RapidSmith
(http://rapidsmith.sourceforge.net). RapidSmith is an XDL ma-
nipulation framework, written as a collection of Java packages
which provides a software API for reading, writing, and
manipulating Xilinx designs represented as XDL files. Our
goal in creating RapidSmith was to create a foundation upon
which to build a variety of FPGA CAD tool research projects.
RapidSmith contains several data structures to represent the



elements making up a design such as instances, nets, pins,
switch matrix connections, tiles, etc.

In order to understand RapidSmith, a rudimentary under-
standing of the Xilinx Design Language (XDL) is needed.
XDL is a human readable ASCII file format which is an
alternative to the Xilinx proprietary NCD format for rep-
resenting Xilinx designs. Xilinx distributes an unsupported
xdl executable with its design tools that has the capability
to convert NCD circuit description files to XDL and vice
versa. The basic building blocks of XDL files are primitives
such as SLICEs, DSP48s, BRAMs, and DCMs (there are a
few dozen FPGA primitive types). In addition, XDL files
describe how each of the primitives are configured (LUT
contents, for example) and possibly placement information.
XDL files can also describe both the logical as well as physical
interconnections (nets and wires) between primitive instances.
Therefore, NCD and XDL files can represent a design in
essentially any developmental state from unplaced/unrouted
designs to fully placed and routed designs.

In addition to being able to convert NCD files to and from
XDL, the xdl executable has a -report mode that will
create a detailed description of a particular Xilinx FPGA
device. This information (an XDLRC file) provides the de-
tails necessary for RapidSmith to manipulate the XDL for
a particular FPGA device. These XDLRC files can grow to
several gigabytes in size because of the extreme detail they
provide on the structure of a specific Xilinx device. Thus, an
issue in the development of RapidSmith was optimizing its
device representation to ensure a minimal footprint and fast
load times. During the installation of RapidSmith a compact
representation for the Xilinx devices of interest is created from
XDLRC files. The largest of these is for an xc5vlx330 part (the
largest Virtex 5 part) and requires only 154MB of heap space
to hold at runtime which is significantly reduced from the
13GB XDLRC report file used to describe the part. This device
file only consumes 1.04MB of disk space and can be loaded
from disk in 1.87 seconds on a Windows XP SP3 workstation
with a 3.0GHz Intel Core 2 Duo E6850, 4GB RAM and using
the Java Sun JVM 1.6.0 21.

RapidSmith contains 9 different Java packages containing
70 classes and over 700 methods for design manipulation and
serves as a foundation for rapid prototyping of FPGA CAD
ideas and algorithms. Although there are several packages and
classes, there are only two main abstractions that users need
to understand about the API: the design and the FPGA device.

Designs in RapidSmith are composed of 4 main components
as shown in Figure 2a: instances, nets, modules and module
instances. Each of these elements have their own class abstrac-
tion in RapidSmith. These design building blocks can undergo
a variety of transformations using the API such as creation,
placement and routing, reconfiguration and repurposing, and
logic transformation by changing attributes. Modules define
collections of instances and nets with externally defined ports
that act as macros. Module instances are actual realized copies
of such macros in a design. These are powerful constructs
that allow for radically different design creation methods on

Design 

Instance 

PrimitiveType 

Attribute 
(List) 

PrimitiveSite 

Net 

NetType 

Pin (List) 

PIP (List) 

Module 

Port 
(List) 

Instance 
(List) 

Net (List) 

ModuleInstance 

Instance 
(List) 

Net (List) 

Device 

Tile (2D Array) 

TileType 
PrimitiveSite 

(Array) 

PrimitiveType 

Tile 

Wire 

(a) (b) 

Fig. 2. RapidSmith class abstractions for designs (a) and FPGA devices (b).

FPGAs.
FPGA devices are the second abstraction in RapidSmith and

represent the logic and routing fabric available to a designer
(see Figure 2b). A Xilinx FPGA is conceptually divided into
a grid of tiles which contain primitive sites and wires. A
primitive site is a valid location for a design instance to be
placed on the FPGA fabric. Most tiles also have programmable
wires called PIPs as well as wires that extend beyond the tile
boundary. All wires in RapidSmith are enumerated as the Java
primitive type int to reduce memory usage. The device class
provides all of the necessary information and APIs to build
full placement and routing algorithms for Xilinx FPGAs.

Because of the abstractions and conveniences mentioned
in RapidSmith, explorative design analysis and rapid pro-
totyping of new ideas and algorithms can be very fast.
The framework provides all of the necessary methods and
classes to build fast FPGA placement and routing algorithms
as well as implement on-the-fly hardware synthesis tech-
niques. Further, the RapidSmith API can be easily integrated
into a graphical environment for visualization of the FPGA
hardware and design elements. Examples of these kinds of
functionality are available with the RapidSmith distribution
(http://rapidsmith.sourceforge.net) in the examples package.

V. DEMONSTRATION

As mentioned above, we believe RapidSmith provides an
excellent foundation for the creation of FPGA design tools. In
this section we will describe the demonstrations that will be
performed at the conference.

A. Design Analysis Tools

Given a design in the XDL format, RapidSmith provides
an easy-to-use platform for creating design analysis tools.
One example of such a tool is shown in Figure 3. This is a
simple design browser tool. In the figure you can see primitive
instances (SLICEL for example), pins, and routing PIPs.

Another such tool is shown in Figure 4, which shows the
ability to search for primitive instances in a loaded design.

We will also demonstrate a design analyzer (not shown)
which tabulates detailed resource utilization statistics and
design properties, such as might be useful for tuning an
automatic placement tool.



Fig. 3. Screenshot of a tree-based graphical list traversal of an XDL design.

Fig. 4. Screenshot demonstrating a program using RapidSmith to interactively
search XDL Instances.

B. Design Creation Tools

Not only can RapidSmith read and write XDL files, its API
provides a mechanism to create circuitry in XDL format. API
routines exist to create primitive instances, customize those
instances, and create logical connections between primitive
instance pins. A simple design creation tool like this will be
demonstrated.

C. Physical Design Tools

Finally, RapidSmith provides an excellent framework for
the creation of physical design tools such as placement and
routing tools. Figure 5 shows the screenshot of a manual hard
macro placement tool. We have used this tool in the creation
and testing of various automatic placement tools, one or more
of which will be demonstrated.

In conclusion, RapidSmith is an XDL manipulation sys-
tem which provides a framework upon which to build a
complete FPGA design tool suite. The demonstrations which

Fig. 5. Screenshot of an interactive hard macro placer built on RapidSmith.

will be shown will illustrate the variety of circuit ma-
nipulations that can be performed. As mentioned above,
RapidSmith is being distributed as an open source tool at
http://rapidsmith.sourceforge.net. It is our hope that others will
adopt RapidSmith for their research which will help further
develop its capabilities and provide new opportunities for
research in FPGA CAD tools. One example is our current
HMFlow project, designed to demonstrate the benefits of hard
macro-based design for Xilinx FPGAs.

REFERENCES

[1] E. L. Horta and J. W. Lockwood, “Automated Method to Generate
Bitstream Intellectual Property Cores for Virtex FPGAs,” in Proc. Field
Programmable Logic.2004, 2004.

[2] Y. E. Krasteva, F. Criado, E. d. l. Torre, and T. Riesgo, “A Fast Emulation-
Based NoC Prototyping Framework,” in RECONFIG ’08: Proceedings
of the 2008 International Conference on Reconfigurable Computing and
FPGAs. Washington, DC, USA: IEEE Computer Society, 2008, pp.
211–216.

[3] R. Tessier, “Fast Placement Approaches for FPGAs,” ACM Trans. Des.
Autom. Electron. Syst., vol. 7, no. 2, pp. 284–305, 2002.

[4] C. Lavin, M. Padilla, S. Ghosh, B. Nelson, B. Hutchings, and M. Wirthlin,
“Using Hard Macros to Reduce FPGA Compilation Time,” in Proceedings
of the 20th International Workshop on Field-Programmable Logic and
Applications, 2010, to appear.

[5] C. Claus, B. Zhang, M. Huebner, C. Schmutzler, J. Becker, and
W. Stechele, “An XDL-based Busmacro Generator for Customizable
Communication Interfaces for Dynamically and Partially Reconfigurable
Systems,” in Workshop on Reconfigurable Computing Education at
ISVLSI 2007, Porto Alegre, Brazil, May 2007.

[6] “Using Three-State Enable Registers in 4000XLA/XV, and Spartan-XL
FPGAs (XAPP123 v2.0),” Xilinx Inc., Tech. Rep., January 2002.

[7] N. Steiner, “A Standalone Wire Database for Routing and Tracing in
Xilinx Virtex, Virtex-E, and Virtex-II FPGAs,” Master’s thesis, Virginia
Tech, August 2002.

[8] K. Kepa, F. Morgan, K. Kościuszkiewicz, L. Braun, M. Hübner, and
J. Becker, “FPGA Analysis Tool: High-Level Flows for Low-Level Design
Analysis in Reconfigurable Computing,” in ARC ’09: Proceedings of the
5th International Workshop on Reconfigurable Computing: Architectures,
Tools and Applications. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
62–73.

[9] P. Graham, B. Nelson, and B. Hutchings, “Instrumenting bitstreams
for debugging fpga circuits,” Field-Programmable Custom Computing
Machines, Annual IEEE Symposium on, vol. 0, pp. 41–50, 2001.


