
D E P A R T M E N T O F

ELECTRICAL &

COMPUTER ENGINEERING

RAPIDSMITH –

RAPID PROTOTYPING FPGA DESIGN TOOLS
Christopher Lavin, Marc Padilla, Jaren Lamprecht, Philip Lundrigan,

Brent Nelson, Brad Hutchings, and Michael Wirthlin

Design

Instance

PrimitiveType

Attribute
(List)

PrimitiveSite

Net

NetType

Pin (List)

PIP (List)

Module

Port
(List)

Instance
(List)

Net (List)

ModuleInstance

Instance
(List)

Net (List)

Device

Tile[][]

TileType PrimitiveSite[]

PrimitiveType

Tile

Wire

What is XDL?

RapidSmith Device Package

What can you do with RapidSmith?

How RapidSmith interacts with conventional Xilinx Flow

Part XDLRC Report

Size

RapidSmith

File Size

Java Heap

Usage*

Load Time in

RapidSmith*

Virtex 4 LX15 0.7 GB 232 KB 39 MB 0.48 secs

Virtex 4 FX140 7.8 GB 1546 KB 140 MB 1.63 secs

Virtex 4 LX200 9.7 GB 1011 KB 116 MB 1.53 secs

Virtex 5 LX20T 0.9 GB 497 KB 39 MB 0.52 secs

Virtex 5 FX200T 9.2 GB 1227 KB 129 MB 1.62 secs

Virtex 5 LX330T 13 GB 1250 KB 153 MB 1.91 secs

Virtex 6 LX75T 3.0 GB 583 KB 54 MB 0.79 secs

Virtex 6 HX565T 18 GB 1659 KB 125 MB 1.81 secs

Virtex 6 LX760 23 GB 1756 KB 135 MB 2.48 secs

*Times and statistics were recorded on an HP workstation with an Intel Core 2 Duo 3.0 GHz processor (E6850), 4GB RAM,
500 GB SATA hard drive, Windows XP Pro SP3 32-bit and using the Oracle (previously Sun) JVM version 1.6.0_21-b07.

Performance of RapidSmith Device Files

What is RapidSmith?

DEVICE AND TOOL SUPPORT

• Currently RapidSmith supports the Xilinx FPGAs in the Virtex

4, Virtex 5 and Virtex 6 families

• It aims to be fully compatible with all modern Xilinx FPGAs

• RapidSmith works with Xilinx ISE 11.1 and above

SUMMARY

• RapidSmith is a research-based FPGA CAD tool

written in Java for modern Xilinx FPGAs

• Based on XDL, its objective is to serve as a rapid

prototyping platform for research ideas and algorithms

relating to low level FPGA CAD tools

CHECK OUT RAPIDSMITH AT:

http://rapidsmith.sourceforge.net

*RapidSmith requires some Xilinx tools for installation

which only run on Windows or Linux

*

GPL

GOALS

• To provide an easy-to-use rapid

prototyping platform for new FPGA

CAD algorithms and ideas

• Provide useful infrastructure to

demonstrate new and unique ideas

on real Xilinx FPGAs

package

newidea;

import

rapidSmith.*;

class

newIdea(){

}

Implementation Idea
Real

test

SUMMARY

• Xilinx has a human-readable native netlist

equivalent to NCD called XDL

• This provides RapidSmith a gateway to create tools

and manipulate Xilinx designs at a very low level

XDL DEVICE REPORTS (XDLRC FILES)

• Describes an entire FPGA and its resources

• Represents device as a 2D array of “Tiles”

• Each tile has primitive sites, wires and PIPs

• Enough information to build entire tool chains

• These files are very large (several gigabytes)

XDL DESIGNS

• XDL describes designs at the FPGA primitive level

(SLICES, DSP, …)

• XDL can represent designs that are:

• unplaced and unrouted

• partially or fully placed and unrouted

• fully placed and partially or fully routed

• XDL design files have 2 common statements:
• instance

• An FPGA primitive instance in the design with

configuration and placement information
• net

• Details pins, sources and sinks and how they

are connecting in the routing resources

RAPIDSMITH DESIGNS
• RapidSmith designs are patterned after XDL

designs

• Tile, primitive sites and wires all reference
objects loaded from Device class

• Contains a deterministic XDL export (save)

method to allow XDL “diff” easier

• Custom XDL parser to ensure speed and XDL

compatibility

RapidSmith Design Package

RapidSmith Device Class Hierarchy

RapidSmith Design Class Hierarchy

RAPIDSMITH DEVICES

• During installation, RapidSmith parses

the large XDLRC files to generate

small, fast loading device file

representations

• These device files (see table below) are

loaded automatically with a design

• Support up to the largest Virtex 6 parts

• RapidSmith comes with graphical

viewer to browse devices (see left)

A screenshot of a custom, interactive placer built to place and debug

automatic hard macro placement algorithms

What’s in RapidSmith?

PACKAGES
• device – see box on right

• design – see box below

• util – several utilities to manipulate, analyze XDL designs in

RapidSmith as well APIs to run Xilinx tools
• placer – example placers and algorithms for placing

• router – example routers and framework for building routers

• primitiveDefs – definitions of primitives found on the FPGAs

• examples – examples illustrating the capabilities of RapidSmith

Xilinx

map

Xilinx

par –p
(route only)

Xilinx

par –r
(place only)

.NCD .NCD .NCD

Xilinx

xdl

Xilinx

xdl
Xilinx

xdl

.XDL .XDL .XDL

BYU

RapidSmith Tools

Xilinx

bitgen
.BIT

 Xilinx provides an
executable called xdl

 which has 3 modes:
• -report, provides

complete description of

an FPGA device

(XDLRC files)
• -ncd2xdl, converts

NCD design files to

human-readable XDL
• -xdl2ncd, converts

XDL designs to NCD

files

Screenshots of the RapidSmith

Device Browser, showing primitive

sites, wires and tile layouts

HashMap<String,Instance>
instances;

DESIGN CLASS

String name;
NetType type;
ArrayList<Pin> pins;

ArrayList<PIP> pips;

Wire indicates that this a normal wire.

Power indicates that this net is tied to a DC power source.

You can use "power", "vcc" or "vdd" to specify a power net.

Ground indicates that this net is tied to ground.

You can use "ground", or "gnd" to specify a ground net.

The <dir> token will be one of the following:

Symbol Description

====== ==

== Bidirectional, unbuffered.

=> Bidirectional, buffered in one direction.

=- Bidirectional, buffered in both directions.

-> Directional, buffered.

No pips exist for unrouted nets.

==

net "GLOBAL_LOGIC0_11" gnd,

outpin "XDL_DUMMY_INT_X33Y26_TIEOFF_X33Y26" HARD0 ,

inpin "FFT_F/U_CNTRL/Madd_ADDRF_addsub0000_cy<1>" BX ,

pip CLB_X33Y26 BYP_INT_B5_INT -> BX_PINWIRE1 ,

pip INT_X33Y26 BOUNCE3 -> BYP_INT_B5 ,

pip INT_X33Y26 GND_WIRE -> BOUNCE3 ,

;

NET CLASS

boolean isOutputPin;
Instance instance;
String pinName;

PIN CLASS

Tile tile;
int startWire;
Int endWire;

PIP CLASS

HashMap<String,Instance> instances;

DESIGN CLASS

String name;
PrimitiveType type;
PrimitiveSite site;
ArrayList<Attribute> attributes;

INSTANCE CLASS

===

The syntax for instances is:

instance <name> <sitedef>, placed <tile> <site>, cfg <string> ;

or

instance <name> <sitedef>, unplaced, cfg <string> ;

For typing convenience you can abbreviate instance to inst.

For IOs there are two special keywords: bonded and unbonded

that can be used to designate whether the PAD of an unplaced IO is

bonded out. If neither keyword is specified, bonded is assumed.

The bonding of placed IOs is determined by the site they are placed in.

If you specify bonded or unbonded for an instance that is not an

IOB it is ignored.

Shown below are three examples for IOs.

instance IO1 IOB, unplaced ; # This will be bonded

instance IO1 IOB, unplaced bonded ; # This will be bonded

instance IO1 IOB, unplaced unbonded ; # This will be unbonded

===

inst "counter<18>" "SLICEL",placed CLB_X17Y51 SLICE_X27Y103 ,

cfg " BXINV::#OFF BYINV::#OFF CEINV::#OFF CLKINV::CLK COUTUSED::0

CY0F::0 CY0G::0 CYINIT::CIN DXMUX::XMUX DYMUX::YMUX

F:counter<18>_rt:#LUT:D=A1 _BEL_PROP::F:PK_PACKTHRU: F5USED::#OFF

FFX:counter_18:#FF FFX_INIT_ATTR::INIT0 FFX_SR_ATTR::SRLOW

FFY:counter_19:#FF FFY_INIT_ATTR::INIT0 FFY_SR_ATTR::SRLOW

FXMUX::FXOR FXUSED::#OFF G:counter<19>_rt:#LUT:D=A1

_BEL_PROP::G:PK_PACKTHRU: GYMUX::GXOR REVUSED::#OFF SRINV::#OFF

SYNC_ATTR::ASYNC XBUSED::#OFF XMUXUSED::#OFF XUSED::#OFF

YBUSED::#OFF YMUXUSED::#OFF YUSED::#OFF

CYMUXF:Mcount_counter_cy<18>: CYMUXG:Mcount_counter_cy<19>:

GNDF:ProtoComp1.GNDF.8: GNDG:ProtoComp1.GNDG.8:

XORF:Mcount_counter_xor<18>:

XORG:Mcount_counter_xor<19>:

_INST_PROP::XDL_SHAPE_MEMBER:Shape_0:0,9 "

String physicalName;
String logicalName;
String value;

ATTRIBUTE CLASS

Illustrates RapidSmith design abstraction for nets, pins and PIPs

Illustrates RapidSmith design abstraction for instances and attributes

OVERVIEW

• 70+ classes, over 650 APIs in RapidSmith
• 225 APIs in the design package alone for

manipulating designs in RapidSmith

• Package names prefixed with

“edu.byu.ece.rapidSmith”

• GUIs built with Qt (qt jambi)

• Several javadocs and lots of documentation

• Tools for comparing XDL designs

• Excellent hard macro support (modules and module

instances)

BUILD CUSTOM TOOLS
• RapidSmith allows for rapid prototyping of custom

tools and unique CAD algorithms

• Create new kinds placers, router, mappers,

packers, …

PERFORM UNIQUE DESIGN ANALYSIS
• RapidSmith provides several APIs to get at low

level parts of design to extract unique design

information
A screenshot of the RapidSmith XDL Design Explorer which illustrates the

flexibility researchers have in constructing custom design analysis tools

A screenshot of a tool that explores XDL designs as a tree illustrating the

ease by which interactive design tools can be constructed in RapidSmith

http://rapidsmith.sourceforge.net/

